• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparing trigonometric interpolation against the Barycentric form of Lagrange interpolation : A battle of accuracy, stability and cost

Söderqvist, Beatrice January 2022 (has links)
This report analyzes and compares Barycentric Lagrange interpolation to Cardinal Trigonometric interpolation, with regards to computational cost and accuracy. It also covers some edge case scenarios which may interfere with the accuracy and stability. Later on, these two interpolation methods are applied on parameterized curves and surfaces, to compare and contrast differences with the standard one dimensional scenarios. The report also contains analysis of and comparison with regular Lagrange interpolation. The report concludes that Barycentric Lagrange interpolation is generally speaking more computationally efficient, and that the inherent need for periodicity makes Cardinal Trigonometric interpolation less reliable in comparison. On the other hand, Barycentric Lagrange interpolation is difficult to implement for higher dimensional problems, and also relies heavily on Chebyshev spaced nodes, something which can cause issues in a practical application of interpolation. Given ideal scenarios, Cardinal Trigonometric interpolation is more accurate, and for periodic functions generally speaking better than Barycentric Lagrange interpolation. Regular Lagrange interpolation is found to be unviable due to the comparatively big computational cost.
2

Introduction to some modes of convergence : Theory and applications

Bolibrzuch, Milosz January 2017 (has links)
This thesis aims to provide a brief exposition of some chosen modes of convergence; namely uniform convergence, pointwise convergence and L1 convergence. Theoretical discussion is complemented by simple applications to scientific computing. The latter include solving differential equations with various methods and estimating the convergence, as well as modelling problematic situations to investigate odd behaviors of usually convergent methods.

Page generated in 0.0955 seconds