• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

INVESTIGATING MACHINE LEARNING ALGORITHMS WITH IMBALANCED BIG DATA

Unknown Date (has links)
Recent technological developments have engendered an expeditious production of big data and also enabled machine learning algorithms to produce high-performance models from such data. Nonetheless, class imbalance (in binary classifications) between the majority and minority classes in big data can skew the predictive performance of the classification algorithms toward the majority (negative) class whereas the minority (positive) class usually holds greater value for the decision makers. Such bias may lead to adverse consequences, some of them even life-threatening, when the existence of false negatives is generally costlier than false positives. The size of the minority class can vary from fair to extraordinary small, which can lead to different performance scores for machine learning algorithms. Class imbalance is a well-studied area for traditional data, i.e., not big data. However, there is limited research focusing on both rarity and severe class imbalance in big data. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.0753 seconds