Spelling suggestions: "subject:"biharmonic operator"" "subject:"disharmonic operator""
1 |
On the Role of Ill-conditioning: Biharmonic Eigenvalue Problem and Multigrid AlgorithmsBray, Kasey 01 January 2019 (has links)
Very fine discretizations of differential operators often lead to large, sparse matrices A, where the condition number of A is large. Such ill-conditioning has well known effects on both solving linear systems and eigenvalue computations, and, in general, computing solutions with relative accuracy independent of the condition number is highly desirable. This dissertation is divided into two parts.
In the first part, we discuss a method of preconditioning, developed by Ye, which allows solutions of Ax=b to be computed accurately. This, in turn, allows for accurate eigenvalue computations. We then use this method to develop discretizations that yield accurate computations of the smallest eigenvalue of the biharmonic operator across several domains. Numerical results from the various schemes are provided to demonstrate the performance of the methods.
In the second part we address the role of the condition number of A in the context of multigrid algorithms. Under various assumptions, we use rigorous Fourier analysis on 2- and 3-grid iteration operators to analyze round off errors in floating point arithmetic. For better understanding of general results, we provide detailed bounds for a particular algorithm applied to the 1-dimensional Poisson equation. Numerical results are provided and compared with those obtained by the schemes discussed in part 1.
|
2 |
A General 4th-Order PDE Method to Generate Bezier Surfaces from the BoundaryMonterde, J., Ugail, Hassan January 2005 (has links)
No description available.
|
3 |
Direct and inverse scattering problems for perturbations of the biharmonic operatorTyni, T. (Teemu) 31 October 2018 (has links)
Abstract
This dissertation is a combination of four articles on the topic of scattering problems for a biharmonic operator. The operator of interest has two coefficients which may be complex-valued and singular. Each of the articles concerns a different aspect of the problem. Namely, the first article discusses the direct scattering problem in higher dimensions and culminates in a proof of Saito's formula, which yields a uniqueness result for the inverse scattering problem. The second paper is about a backscattering problem in two and three dimensions. We prove that the inverse Born approximation can be used to recover the singularities in the coefficients of the operator. The third article fills in an answer to the question about recovering the complex-valued coefficients in three dimensions that was left open in the second article. The final article studies the inverse scattering problem on the line for a quasi-linear operator. / Tiivistelmä
Väitöskirjatyö koostuu neljästä artikkelista, jotka käsittelevät sirontaongelmia biharmoniselle operaattorille. Työn kohteena olevalla operaattorilla on kaksi kerrointa, jotka voivat olla kompleksiarvoisia ja singulaarisia. Kukin artikkeli käsittelee sirontaongelmaa eri näkökulmasta. Ensimmäinen artikkeli koostuu pääasiassa suorasta sirontateoriasta korkeammissa ulottuvuuksissa huipentuen lopulta Saiton kaavan todistukseen, jonka seurauksena saadaan yksikäsitteisyystulos käänteiselle sirontaongelmalle. Toisen artikkelin aiheena on takaisinsirontaongelma kahdessa ja kolmessa ulottuvuudessa. Todistamme, että käänteistä Bornin approksimaatiota voidaan käyttää paikantamaan kertoimien mahdolliset singulariteetit. Kolmas artikkeli vastaa toisessa artikkelissa avoimeksi jääneeseen kysymykseen kompleksiarvoisien kertoimien rekonstruoimisesta kolmessa ulottuvuudessa. Viimeisessä artikkelissa tutkitaan käänteistä sirontaongelmaa kvasilineaariselle operaattorille yhdessä ulottuvuudessa.
|
4 |
Etude d'un problème pour le bilaplacien dans une famille d'ouverts du plan / Study of a problem for the biharmonic operator, in a open family of planTami, Abdelkader 01 December 2016 (has links)
L’objet de cette thèse est l’étude du problème Δ 2uω = fω avec les conditions aux limites Uω = Δ uω = 0, le second membre étant supposé dépendre continûment de ω dans L2(ω), où ω = {(r, θ); 0 < r < 1, 0 < θ < ω} , 0 < ω ≤ π, est une famille de secteurs tronqués du plan. Si ω < π on sait d’après Blum et Rannacher (1980) que la solution de ce problème uω se décompose au voisinage de l’origine en uω = u1,ω + u2,ω + u3,ω, (1) où u1,ω, u2,ω sont les parties singulières de uω et u3,ω la partie régulière. En effet, au voisinage de l’origine u1,ω (resp. u2,ω, u3,ω) est de régularité H1+πω−ǫ (resp. H2+πω−ǫ, H4) pour tout Q > 0, tandis que la solution uπ appartient, au moins au voisinage de l’origine, à l’espace H4(π), où π est le demi-disque supérieur de centre 0 et de rayon r = 1. On voit clairement une résolution de la singularité près de l’angle π dont la description est l’objectif principal de ce travail. Le résultat obtenu est que la décomposition (1) de uω est uniforme par rapport à ω, lorsque ω → π, pour les meilleures topologies possibles pour chacun des termes, et converge terme à terme vers le développement limité de uπ au voisinage de 0. / In this work, we study the family of problems Δ 2uω = fω with boundary conditionuω = Δ uω = 0. There, the second member is assumed to depend smoothly on ω in L2(ω), where ω = {(r, θ); 0 < r < 1, 0 < θ < ω} , 0 < ω ≤ π, is a family of truncated sectors of the plane. If ω < π it is known from Blum et Rannacher (1980) that the solution uω decomposes as uω = u1,ω + u2,ω + u3,ω, (1) where u1,ω, u2,ω are singular and u3,ω is regular. Indeed, near the origin, u1,ω(resp. u2,ω, u3,ω) is of regularity H1+πω−ǫ (resp. H2+πω−ǫ, H4) for every Q > 0, while the solution uπ is, in the neighborhood of the origin again, of regularity H4. One clearly sees a resolution of the singularity near the angle π whose descriptionis the main objective of this work. The obtained result is that there exists a decomposition (1) of uω which is uniform with respect to ω, when ω → π, with the best possible topologies for each term, and which term by term convergestowards the Taylor expansion of uπ near 0.
|
5 |
On harmonic and biharmonic Bezier surfacesMonterde, J., Ugail, Hassan January 2004 (has links)
Yes
|
6 |
A General 4th-Order PDE Method to Generate Bézier Surfaces from the BoundaryMonterde, J., Ugail, Hassan January 2006 (has links)
No / In this paper we present a method for generating Bézier surfaces from the boundary information based on a general 4th-order PDE. This is a generalisation of our previous work on harmonic and biharmonic Bézier surfaces whereby we studied the Bézier solutions for Laplace and the standard biharmonic equation, respectively.
Here we study the Bézier solutions of the Euler¿Lagrange equation associated with the most general quadratic functional. We show that there is a large class of fourth-order operators for which Bézier solutions exist and hence we show that such operators can be utilised to generate Bézier surfaces from the boundary information. As part of this work we present a general method for generating these Bézier surfaces. Furthermore, we show that some of the existing techniques for boundary based surface design, such as Coons patches and Bloor¿Wilson PDE method, are indeed particular cases of the generalised framework we present here.
|
7 |
Problemas de valores de contorno envolvendo o operador biharmônico / Boundary value problems involving the biharmonic operatorFerreira Junior, Vanderley Alves 25 February 2013 (has links)
Estudamos o problema de valores de contorno {\'DELTA POT. 2\' u = f em \'OMEGA\', \'BETA\' u = 0 em \'PARTIAL OMEGA\', um aberto limitado \'OMEGA\' \'ESTÁ CONTIDO\' \'R POT. N\' , sob diferentes condições de contorno. As questões de existência e positividade de soluções para este problema são abordadas com condições de contorno de Dirichlet, Navier e Steklov. Deduzimos condições de contorno naturais através do estudo de um modelo para uma placa com carga estática. Estudamos ainda propriedades do primeiro autovalor de \'DELTA POT. 2\' e o problema semilinear {\'DELTA POT. 2\' u = F (u) em \'OMEGA\' u = \'PARTIAL\'u SUP . \'PARTIAL\' v = 0 em \'PARTIUAL\' \'OMEGA\', para não-linearidades do tipo F(t) = \'l t l POT. p-1\', p \' DIFERENTE\' t, p > 0. Para tal problema estudamos existência e não-existência de soluções e positividade / We study the boundary value problem {\'DELTA POT. 2\' u = f in \'OMEGA\', \'BETA\' u = 0 in \'PARTIAL OMEGA\', in a bounded open \'OMEGA\'\'THIS CONTAINED\' \'R POT. N\' , under different boundary conditions. The questions of existence and positivity of solutions for this problem are addressed with Dirichlet, Navier and Steklov boundary conditions. We deduce natural boundary conditions through the study of a model for a plate with static load. We also study properties of the first eigenvalue of \'DELTA POT. 2\' and the semi-linear problem { \'DELTA POT. 2\' e o problema semilinear {\'DELTA POT. 2\' u = F (u) in \'OMEGA\' u = \'PARTIAL\'u SUP . \'PARTIAL\' v = 0 in \'PARTIUAL\' \'OMEGA\', for non-linearities like F(t) = \'l t l POT. p-1\', p \' DIFFERENT\' t, p > 0. For such problem we study existence and non-existence of solutions and its positivity
|
8 |
Sobre a multiplicidade de soluções positivas para uma classe de problemas elípticos de quarta-ordem via categoria de Lusternik-Schnirelman / On the multiplicity of positive solutions for a class of fourth-order elliptic problems by Lusternik-Schnirelman categoryMelo, Jéssyca Lange Ferreira 18 June 2014 (has links)
Neste trabalho estudamos a existência e a multiplicidade de soluções clássicas positivas para uma classe de problemas de quarta-ordem sob a condição de fronteira de Navier, relacionando o número de soluções com a topologia do domínio, mais precisamente, com sua categoria de Lusternik-Schnirelman. Introduzimos também uma noção de regiões crítica e não-crítica associadas a um de nossos problemas, a fim de garantir condições para existência de solução / In this work we study the existence and multiplicity of positive classical solutions for a class of fourth-order problems under Navier boundary condition, relating the number of solutions to the domain topology, more specifically, to its Lusternik-Schnirelman category. We also introduce the notion of critical and noncritical regions related to one of our problems, in order to ensure conditions to existence of solutions
|
9 |
Existência e multiplicidade de soluções de problemas de contorno elípticos de quarta ordem via métodos topológicos / Existence and multiplicity of solutions to elliptic boundary value problems by topological methodsSILVA, Kaye Oliveira da 24 February 2012 (has links)
Made available in DSpace on 2014-07-29T16:02:19Z (GMT). No. of bitstreams: 1
Dissertacao Kaye O da Silva.pdf: 935849 bytes, checksum: 3342ffadf63161660c1795053815a170 (MD5)
Previous issue date: 2012-02-24 / In this work, we employ topological methods in order to study existence and multiplicity
of solutions, of nonlinear boundary value problems of the fourth order. More precisely,
we make use of results on connected components of fixed points, as well as global
bifurcation, to show existence and multiplicity of weak solutions of Partial Differential
Equations, involving the Biharmonic operator under Navier boundary conditions. Proofs
of the abstract results used, are presented in detail. / Neste trabalho, utilizamos métodos topológicos para estudar existência e multiplicidade
de soluções de Problemas de Contorno Elípticos Não Lineares de 4a ordem. Mais
precisamente, utilizamos resultados sobre componentes conexas de pontos fixos e tambem
bifurcação global, para provar existência e multiplicidade de soluções fracas de Equações
Diferenciais Parciais, envolvendo o Operador Binarmônico, sob condições de fronteira de
Navier. As demonstrações dos resultados abstratos que utilizamos, são apresentadas em
detalhes.
|
10 |
Problemas de valores de contorno envolvendo o operador biharmônico / Boundary value problems involving the biharmonic operatorVanderley Alves Ferreira Junior 25 February 2013 (has links)
Estudamos o problema de valores de contorno {\'DELTA POT. 2\' u = f em \'OMEGA\', \'BETA\' u = 0 em \'PARTIAL OMEGA\', um aberto limitado \'OMEGA\' \'ESTÁ CONTIDO\' \'R POT. N\' , sob diferentes condições de contorno. As questões de existência e positividade de soluções para este problema são abordadas com condições de contorno de Dirichlet, Navier e Steklov. Deduzimos condições de contorno naturais através do estudo de um modelo para uma placa com carga estática. Estudamos ainda propriedades do primeiro autovalor de \'DELTA POT. 2\' e o problema semilinear {\'DELTA POT. 2\' u = F (u) em \'OMEGA\' u = \'PARTIAL\'u SUP . \'PARTIAL\' v = 0 em \'PARTIUAL\' \'OMEGA\', para não-linearidades do tipo F(t) = \'l t l POT. p-1\', p \' DIFERENTE\' t, p > 0. Para tal problema estudamos existência e não-existência de soluções e positividade / We study the boundary value problem {\'DELTA POT. 2\' u = f in \'OMEGA\', \'BETA\' u = 0 in \'PARTIAL OMEGA\', in a bounded open \'OMEGA\'\'THIS CONTAINED\' \'R POT. N\' , under different boundary conditions. The questions of existence and positivity of solutions for this problem are addressed with Dirichlet, Navier and Steklov boundary conditions. We deduce natural boundary conditions through the study of a model for a plate with static load. We also study properties of the first eigenvalue of \'DELTA POT. 2\' and the semi-linear problem { \'DELTA POT. 2\' e o problema semilinear {\'DELTA POT. 2\' u = F (u) in \'OMEGA\' u = \'PARTIAL\'u SUP . \'PARTIAL\' v = 0 in \'PARTIUAL\' \'OMEGA\', for non-linearities like F(t) = \'l t l POT. p-1\', p \' DIFFERENT\' t, p > 0. For such problem we study existence and non-existence of solutions and its positivity
|
Page generated in 0.0725 seconds