Spelling suggestions: "subject:"bilingual alignment"" "subject:"ilingual alignment""
1 |
Méthode d'enrichissement et d'élargissement d'une ontologie à partir de corpus de spécialité multilingues / Method of ontology enrichment and population from multilingual comparable domain specific corpusKorenchuk, Yuliya 11 July 2017 (has links)
Cette thèse propose une méthode pour alimenter une ontologie, une structure de concepts liés par des relations sémantiques, par des termes français, anglais et allemands à partir de corpus spécialisés comparables. Son apport principal est le développement des méthodes d'extraction utilisant des ressources endogènes apprises à partir de corpus et d'ontologie. Exploitant des n-grammes de caractères, elles sont disponibles et indépendantes vis-à-vis de la langue et du domaine. La première contribution porte sur l'utilisation des ressources morphologiques et morphosyntaxiques endogènes pour extraire des termes mono- et polylexicaux à partir de corpus. La deuxième contribution vise à exploiter des ressources endogènes pour identifier leurs traductions. La troisième contribution concerne la construction des familles morphologiques endogènes servant à alimenter l'ontologie. / This thesis proposes a method of enrichment and population of an ontology, a structure of concepts linked by semantic relations, by terms in French, English and German from comparable domain-specific corpora. Our main contribution is the development of extraction methods based on endogenous resources, learned from the corpus and the ontology being analyzed. Using caracter n-grams, these resources are available and independent of a particular language or domain. The first contribution concerns the use of endogenous morphological and morphosyntactic resources for mono- and polylexical terms extraction from the corpus. The second contribution aims to use endogenous resources to identify translations for these terms. The third contribution concerns the construction of endogenous morphological families designed to enrich and populate the ontology.
|
2 |
Unsupervised word discovery for computational language documentation / Découverte non-supervisée de mots pour outiller la linguistique de terrainGodard, Pierre 16 April 2019 (has links)
La diversité linguistique est actuellement menacée : la moitié des langues connues dans le monde pourraient disparaître d'ici la fin du siècle. Cette prise de conscience a inspiré de nombreuses initiatives dans le domaine de la linguistique documentaire au cours des deux dernières décennies, et 2019 a été proclamée Année internationale des langues autochtones par les Nations Unies, pour sensibiliser le public à cette question et encourager les initiatives de documentation et de préservation. Néanmoins, ce travail est coûteux en temps, et le nombre de linguistes de terrain, limité. Par conséquent, le domaine émergent de la documentation linguistique computationnelle (CLD) vise à favoriser le travail des linguistes à l'aide d'outils de traitement automatique. Le projet Breaking the Unwritten Language Barrier (BULB), par exemple, constitue l'un des efforts qui définissent ce nouveau domaine, et réunit des linguistes et des informaticiens. Cette thèse examine le problème particulier de la découverte de mots dans un flot non segmenté de caractères, ou de phonèmes, transcrits à partir du signal de parole dans un contexte de langues très peu dotées. Il s'agit principalement d'une procédure de segmentation, qui peut également être couplée à une procédure d'alignement lorsqu'une traduction est disponible. En utilisant deux corpus en langues bantoues correspondant à un scénario réaliste pour la linguistique documentaire, l'un en Mboshi (République du Congo) et l'autre en Myene (Gabon), nous comparons diverses méthodes monolingues et bilingues de découverte de mots sans supervision. Nous montrons ensuite que l'utilisation de connaissances linguistiques expertes au sein du formalisme des Adaptor Grammars peut grandement améliorer les résultats de la segmentation, et nous indiquons également des façons d'utiliser ce formalisme comme outil de décision pour le linguiste. Nous proposons aussi une variante tonale pour un algorithme de segmentation bayésien non-paramétrique, qui utilise un schéma de repli modifié pour capturer la structure tonale. Pour tirer parti de la supervision faible d'une traduction, nous proposons et étendons, enfin, une méthode de segmentation neuronale basée sur l'attention, et améliorons significativement la performance d'une méthode bilingue existante. / Language diversity is under considerable pressure: half of the world’s languages could disappear by the end of this century. This realization has sparked many initiatives in documentary linguistics in the past two decades, and 2019 has been proclaimed the International Year of Indigenous Languages by the United Nations, to raise public awareness of the issue and foster initiatives for language documentation and preservation. Yet documentation and preservation are time-consuming processes, and the supply of field linguists is limited. Consequently, the emerging field of computational language documentation (CLD) seeks to assist linguists in providing them with automatic processing tools. The Breaking the Unwritten Language Barrier (BULB) project, for instance, constitutes one of the efforts defining this new field, bringing together linguists and computer scientists. This thesis examines the particular problem of discovering words in an unsegmented stream of characters, or phonemes, transcribed from speech in a very-low-resource setting. This primarily involves a segmentation procedure, which can also be paired with an alignment procedure when a translation is available. Using two realistic Bantu corpora for language documentation, one in Mboshi (Republic of the Congo) and the other in Myene (Gabon), we benchmark various monolingual and bilingual unsupervised word discovery methods. We then show that using expert knowledge in the Adaptor Grammar framework can vastly improve segmentation results, and we indicate ways to use this framework as a decision tool for the linguist. We also propose a tonal variant for a strong nonparametric Bayesian segmentation algorithm, making use of a modified backoff scheme designed to capture tonal structure. To leverage the weak supervision given by a translation, we finally propose and extend an attention-based neural segmentation method, improving significantly the segmentation performance of an existing bilingual method.
|
Page generated in 0.0968 seconds