• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bimanual Transfer and Retention of Visuomotor Adaptation is Driven by Explicit Processes

Bouchard, Jean-Michel 08 January 2020 (has links)
Reaching with altered visual feedback of the hand’s position in a virtual environment leads to reach adaptation in the trained hand, and also in the untrained hand (Wang & Sainburg, 2002). In the current study, we asked if reach adaptation in the untrained (right) hand is due to transfer of explicit (i.e., EA; conscious strategy) and/or implicit adaptation (i.e., IA; unconscious) from the left (trained) hand, and if the transfer of EA and IA changes depending on how one is made aware of the visuomotor distortion. We further asked if EA and IA are retained in the trained and untrained hand for 24 hours. Participants (n=60) were evenly divided into 3 groups (Strategy, No-Strategy, and Control). All participants reached to visual targets while seeing a cursor on the screen that was rotated 40° clockwise relative to their hand motion. Participants in the Strategy group were instructed on how to counteract the visuomotor distortion. The No-Strategy group was not told of the upcoming visuomotor distortion but was later asked to reach while engaging in any strategy they had learned in order to assess EA. Participants in the Control group were also not told of the upcoming visuomotor distortion and were never instructed to engage in any strategy when reaching. EA and IA were assessed in both the trained and untrained hands immediately following rotated reach training, and 24 hours later by having participants reach without the cursor when instructed to: (1) aim so that your hand lands on the target (to assess IA) and (2) use what was learned during training so that the cursor lands on the target (to assess EA + IA; exception of Control group). Results revealed that the groups differed with respect to the extent of reach adaptation achieved when initially training with the rotated cursor, such that the Strategy group had greater EA and less IA compared to the No-Strategy group in the trained hand. Unexpectedly, the Control group also showed less IA compared to the No-Strategy group, but was similar to the Strategy group. For both the Strategy and No-Strategy groups, EA was transferred between hands and was retained over time. While the extent of IA varied between groups in the trained (left) hand immediately following reach training trials, significant transfer of IA was not found in any of the three groups. Retention of IA was observed in the trained hand but decayed over testing days. Together, these results suggest that while initial EA and IA in the trained hand is dependent on how one is made aware of the visuomotor distortion, transfer and retention of visuomotor adaptation is driven almost exclusively by EA, regardless of instructions provided.

Page generated in 0.0442 seconds