• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular Investigation of the Clostridium difficile Binary Toxin

Metcalf, Devon 17 December 2012 (has links)
This thesis is an investigation of the binary toxin of Clostridium difficile. The aim was to improve the understanding of the role of the binary toxin in pathogenesis. Quantitative real-time PCR (qPCR) was used to study expression of cdtA encoding the binary toxin enzymatic domain, cdtR encoding the binary toxin regulator and tcdB encoding toxin B, in response to growth phase and antimicrobial treatments in 2 C. difficile strains. Validation of a set of stable reference genes was required prior to qPCR analysis of gene expression. A universal set of genes could not be identified and reference genes should be validated on a strain-specific basis. Significant increases or decreases in expression were observed in response to levofloxacin and enrofloxacin exposure. The 2 strains selected were from different ribotypes and did not always share expression patterns. Binary toxin loci were sequenced in and compared between 10 C. difficile strains. A non-sense mutation in the cdtR gene of a ribotype 078 strain was identified and found to be restricted to toxinotype V isolates. This mutation is predicted to result in a truncated, non-functional protein. Despite the mutation, cdtA expression was still detected by qPCR. Finally, an evaluation of commercial nucleic acid extraction kits was performed. All kits produced RNA of adequate quality and yield, however, RNA isolated using the the Roche MagNA Pure LC RNA Isolation Kit could not be analyzed using the Agilent Bioanalyzer. It could not properly assign RNA integrity numbers due to a failure to remove small RNAs which were interpreted as degradation. All kits were suitable for DNA extraction with the exception of the MagNA Pure LC DNA Isolation Kit III which produced sheared DNA. In conclusion, this study demonstrated that the binary toxin regulator isn’t necessary for toxin expression and suggests other regulators of expression exist. Binary toxin gene expression did not necessarily correlate with expression of tcdB and expression levels vary between strains. This study also highlighted how the heterogeneity of C. difficile complicates gene expression experiments and the need for assessment of nucleic acid extraction methods due to critical variations between established commercial systems.
2

Structural studies on actin-ADP ribosylating binary toxin from C. difficile

Sundriyal, Amit January 2010 (has links)
Clostridium difficile infection (CDI) is a serious problem within the healthcare environment where the bacterium causes symptoms ranging from mild diarrhoea to life-threatening colitis. In addition to its principal virulent factors, Toxin A and Toxin B, some C. difficile strains produce a binary toxin (CDT) composed of two subunits namely CDTa and CDTb that are produced and secreted from the cell as two separate polypeptides. Once in the gut, these fragments have the potential to combine to form a potent cytotoxin whose role in the pathogenesis of CDI is presently unclear. This thesis is a step towards understanding structural and functional aspects of the binary toxin produced by C. difficile. The first half of this thesis (chapter I and II) provides a brief introduction to the method of structure determination of proteins molecules, i. e. X-ray crystallography and a detailed overview of C. difficile and the three known toxins from C. difficile namely – Toxin A, Toxin B and the binary toxin. Chapter II further focuses on C. difficile binary toxin and other related toxins. These toxins, known as the ADP-ribosylating toxins (ADPRTs) form a big family of potent toxins which includes Cholera, Pertussis and Diphtheria toxins and are capable of transferring the ADP-ribose part of NAD/NADPH to a varity of substrates in the target cell which ultimately results in cell death. The second half of the thesis comprises of experimental procedures that were carried out during the course of this study and their results. Cloning and expression methods for recombinant CDTa and CDTb in bacterial system followed by their purification are described with the abnormal behaviour exhibited by CDTb (chapter III). We show for the first time that purified CDTa and CDTb can combine to form an active CDT which is cytotoxic to Vero cells (Chapter IV). The purification processes described yielded milligram quantities of binary toxin fragments of high purity that led to the successful crystallisation of the proteins (chapter IV) for further functional and structural studies. High resolution crystal structures of CDTa in its native form (at pH 4.0, 8.5 and 9.0) and in complex with the ADP ribose donors -NAD and NADPH (at pH 9.0) have been determined (chapter V). The crystal structures of the native protein show ‘pronounced conformational flexibility’ confined to the active site region of the protein and ‘enhanced’ disorder at low pH while the complex structures highlight significant differences in ‘ligand specificity’ compared with the enzymatic subunit of a close homologue, Clostridium perfringens Iota toxin (Ia). These structural data provide the first detailed information on protein-donor substrate complex stabilisation in CDTa which may have implications in understanding CDT recognition. Crystallisation of CDTb yielded preliminary crystals. The optimisation of these crystallisation conditions is underway. The thesis concludes with some thoughts and discussion on future directions of this research.
3

Productivity Analyses In Fermentations With Three Different Biolarvacides

Ozcelik, Hayriye 01 April 2004 (has links) (PDF)
The development of insecticides resistance among many insect species and the ecological damage occasionally caused by the lack of specificity in the toxic effects of insecticides have provided the impetus to seek alternative methods of insect control. This observation led to the development of bioinsecticides based on the insecticidal action Bacillus sphaericus (Bs), Bacillus turingiensis (Bt). The discovery of biolarvicidal actions of Bacillus thuringiensis and Bacillus sphaericus opened a new perspective for insect control. In the first part of the study was initiated to determine a suitable fermentation medium formulation and optimal fermentation conditions for large scale, low cost production of Bs. Bs 2362 was tested in whey and soy flour based media. These media was reformulized form of NYSM (Nutrient Broth Yeast Extract Sporulation Medium). Soy flour based medium, SYSM, gave the promising results in terms of cell yield, sporulation frequency and toxin production. In the second part of the study, fermentation productivity anlaysis of a local isolate Bacillus thuringiensis subsp. kurstaki 81 was evaluated. In order to compare different C:N ratios (1:1, 2:1, 4:1, 8:1, 10:1 20:1 and 30:1) of YSM medium. Btk 81 were run for 72 h and cell growth, sporulation and toxin protein profile of Btk 81 were determined for each. When all the quantitative toxin data for both glucose and sucrose varying C:N ratios were compared, it was determined that the crystal protein concentrations had the highest value in sucrose based medium when C:N ratio was 10:1. Regulation by C:N ratio of crystal protein biosynthesis was investigated for improving the production of this protein by our third candidate strain Bacillus thuringiensis subsp. israelensis ONR60. The experiments were performed by using TBL medium, at three different C:N ratios, 2:1, 4:1 and 8:1 respectively. In view of the cell growth characteristics and bioassy results, TBL medium designed with 2:1 C:N ratio was chosen as the best for further steps. In addition, running time of the culture determined as 60 hours as was also determined in the previous experiment. As the last step of this study, the pre-determined optimal conditions were applied to a 30L batch type fermentor for toxin production by using Bacillus thuringiensis subsp. israelensis ONR60. Unfortunately, the toxicity was not satisfactory, being much below the level of that expected as based on the results of the laboratory scale studies.
4

Développement d’une méthode de production de vésicules membranaires permettant l’étude du mode d’action des toxines insecticides de Bacillus thuringiensis

Schmidt, Maxime 12 1900 (has links)
La plupart des toxines de Bacillus thuringiensis perméabilisent la membrane intestinale des insectes sensibles en formant des pores qui abolissent le potentiel électrique et les gradients ioniques. Plusieurs toxines ont été étudiées avec des vésicules purifiées de la bordure en brosse intestinale des insectes. Malheureusement, la membrane intestinale de beaucoup d’insectes ne forme pas des vésicules suffisamment étanches pour les expériences de perméabilisation. Une nouvelle technique utilisant des liposomes géants et une sonde de perméabilité membranaire a été développée pour caractériser deux nouvelles toxines particulièrement prometteuses pour le biocontrôle d’un des principaux ravageurs du maïs, la chrysomèle des racines du maïs (Diabrotica virgifera virgifera LeConte), Cry6Aa1 et la toxine binaire DS10/DS11. Les deux toxines perméabilisent efficacement les liposomes. La toxine binaire forme des pores qui sont légèrement sélectifs pour les cations, comme la plupart des toxines de B. thuringiensis. Bien que la Cry6Aa1 puisse former des pores sélectifs pour les anions, les résultats suggèrent aussi qu’elle pourrait, contrairement aux autres toxines de cette bactérie, ne former des pores qu’en présence d’une force ionique élevée. La formation des pores par ces deux toxines semble être sensible à la courbure de la membrane cible étant donné qu’elle est beaucoup plus efficace dans des liposomes géants que dans des liposomes de même composition, mais plus petits. Ce travail jette les bases de la mise au point d’une technique qui permettrait l’étude des toxines dans des liposomes géants enrichis avec des protéines et des lipides provenant de la membrane intestinale des insectes cibles. / Most Bacillus thuringiensis toxins permeabilize the intestinal membrane of susceptible insects by forming pores that abolish transmembrane electrical potentials and ionic gradients. Several toxins have been studied using brush border membrane vesicles purified from the insect midgut. Unfortunately, the intestinal membrane from many insects does not form vesicles that are tight enough to be used in permeabilisation experiments. A new technique using giant liposomes and a membrane permeability probe was developed to evaluate the pore-forming ability of two particularly promising toxins for the biocontrol of a major corn pest, the Western corn rootworm (Diabrotica virgifera virgifera LeConte), Cry6Aa1 and the binary toxin DS10/DS11. Both toxins permeabilized the liposomes efficiently. However, analysis of the permeabilisation rates under different experimental conditions indicates that these toxins differ in their biophysical properties. The binary toxin forms pores which are slightly selective for cations, like most B. thuringiensis toxins. On the other hand, although the results suggest that Cry6Aa1 could form anion-selective pores, they could also indicate that, in contrast with other toxins produced by this bacterium, it could form pores only under high ionic strength conditions. Pore formation by both toxins appears to be sensitive to membrane curvature since it is much more efficient in giant liposomes than in liposomes with identical composition, but smaller in size. This study sets the bases for the development of a technique that would allow the toxins to be studied in giant liposomes enriched with proteins and lipids from the intestinal membrane of target insects.

Page generated in 0.0452 seconds