• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Bio-based Phenol Formaldehyde Resol Resins Using Mountain Pine Beetle Infested Lodgepole Pine Barks

Zhao, Yong 13 August 2013 (has links)
Phenol formaldehyde (PF) resol resins have long been used widely as wood adhesives due to their excellent bonding performance, water resistance and durability. With the growing concern for fossil fuel depletion and climate change, there is a strong interest in exploring renewable biomass materials as substitutes for petroleum-based feedstock. Bark, rich in phenolic compounds, has demonstrated potential to partially substitute phenol in synthesizing bio-based PF resins. In this study, acid-catalyzed phenol liquefaction and alkaline extraction were used to convert mountain pine beetle (MPB; Dendroctonus ponderosae) infested lodgepole pine (Pinus contorta) barks to phenol substitutes, liquefied bark and bark extractives. Two types of bio-based phenol formaldehyde (PF) resol resins, namely liquefied bark-PF resin and bark extractive-PF resins, were then synthesized and characterized. It was found that acid-catalyzed phenol liquefaction and alkaline extraction were effective conversion methods to obtain phenol substitute with the maximum yield of 85% and 68%, respectively. The bio-based PF resol resins had higher molecular weights, higher polydispersity indices, shorter gel times, and faster curing rates than the lab synthesized control PF resin without the bark components. Based on the lap-shear tests, the bio-based PF resol resins exhibited comparable wet and dry bonding strength to lab PF resin and commercial PF resin. The post-curing thermal stability of the bio-based PF resins was similar to the lab control PF resin. The liquid-state 13C nuclear magnetic resonance (NMR) study revealed significant influences on the resin structures by the inclusion of the bark components. Methylene ether bridges, which were absent in the lab PF resin, were found in the bio-based PF resins. The bark components favored the formation of para-ortho methylene linkages in the bio-based bark extractive-PF resins. The liquefied bark-PF resin showed a higher ratio of para-para/ortho-para methylene link (-CH2-), a higher unsubstituted/substituted hydrogen (-H/-CH2OH) ratio and a higher methylol/methylene (-CH2OH/-CH2-) ratio than the bark extractive-PF resin. Both tannin components of bark alkaline extractives and phenolated barks contributed to the acceleration of the curing rate of the bio-based resins. This research demonstrated the promise of the bio-based PF resins containing either bark alkaline extractives or liquefied barks as environmentally friendly alternatives to PF adhesives derived solely from fossil fuel based phenol and proposed a novel higher value-added application of the largely available barks from the mountain pine beetle-infested lodgepole pine trees.
2

Development of Bio-based Phenol Formaldehyde Resol Resins Using Mountain Pine Beetle Infested Lodgepole Pine Barks

Zhao, Yong 13 August 2013 (has links)
Phenol formaldehyde (PF) resol resins have long been used widely as wood adhesives due to their excellent bonding performance, water resistance and durability. With the growing concern for fossil fuel depletion and climate change, there is a strong interest in exploring renewable biomass materials as substitutes for petroleum-based feedstock. Bark, rich in phenolic compounds, has demonstrated potential to partially substitute phenol in synthesizing bio-based PF resins. In this study, acid-catalyzed phenol liquefaction and alkaline extraction were used to convert mountain pine beetle (MPB; Dendroctonus ponderosae) infested lodgepole pine (Pinus contorta) barks to phenol substitutes, liquefied bark and bark extractives. Two types of bio-based phenol formaldehyde (PF) resol resins, namely liquefied bark-PF resin and bark extractive-PF resins, were then synthesized and characterized. It was found that acid-catalyzed phenol liquefaction and alkaline extraction were effective conversion methods to obtain phenol substitute with the maximum yield of 85% and 68%, respectively. The bio-based PF resol resins had higher molecular weights, higher polydispersity indices, shorter gel times, and faster curing rates than the lab synthesized control PF resin without the bark components. Based on the lap-shear tests, the bio-based PF resol resins exhibited comparable wet and dry bonding strength to lab PF resin and commercial PF resin. The post-curing thermal stability of the bio-based PF resins was similar to the lab control PF resin. The liquid-state 13C nuclear magnetic resonance (NMR) study revealed significant influences on the resin structures by the inclusion of the bark components. Methylene ether bridges, which were absent in the lab PF resin, were found in the bio-based PF resins. The bark components favored the formation of para-ortho methylene linkages in the bio-based bark extractive-PF resins. The liquefied bark-PF resin showed a higher ratio of para-para/ortho-para methylene link (-CH2-), a higher unsubstituted/substituted hydrogen (-H/-CH2OH) ratio and a higher methylol/methylene (-CH2OH/-CH2-) ratio than the bark extractive-PF resin. Both tannin components of bark alkaline extractives and phenolated barks contributed to the acceleration of the curing rate of the bio-based resins. This research demonstrated the promise of the bio-based PF resins containing either bark alkaline extractives or liquefied barks as environmentally friendly alternatives to PF adhesives derived solely from fossil fuel based phenol and proposed a novel higher value-added application of the largely available barks from the mountain pine beetle-infested lodgepole pine trees.

Page generated in 0.0712 seconds