• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of Phase Change Material in Buildings: Field Data vs. EnergyPlus SImulation

January 2010 (has links)
abstract: Phase Change Material (PCM) plays an important role as a thermal energy storage device by utilizing its high storage density and latent heat property. One of the potential applications for PCM is in buildings by incorporating them in the envelope for energy conservation. During the summer season, the benefits are a decrease in overall energy consumption by the air conditioning unit and a time shift in peak load during the day. Experimental work was carried out by Arizona Public Service (APS) in collaboration with Phase Change Energy Solutions (PCES) Inc. with a new class of organic-based PCM. This "BioPCM" has non-flammable properties and can be safely used in buildings. The experimental setup showed maximum energy savings of about 30%, a maximum peak load shift of ~ 60 min, and maximum cost savings of about 30%. Simulation was performed to validate the experimental results. EnergyPlus was chosen as it has the capability to simulate phase change material in the building envelope. The building material properties were chosen from the ASHRAE Handbook - Fundamentals and the HVAC system used was a window-mounted heat pump. The weather file used in the simulation was customized for the year 2008 from the National Renewable Energy Laboratory (NREL) website. All EnergyPlus inputs were ensured to match closely with the experimental parameters. The simulation results yielded comparable trends with the experimental energy consumption values, however time shifts were not observed. Several other parametric studies like varying PCM thermal conductivity, temperature range, location, insulation R-value and combination of different PCMs were analyzed and results are presented. It was found that a PCM with a melting point from 23 to 27 °C led to maximum energy savings and greater peak load time shift duration, and is more suitable than other PCM temperature ranges for light weight building construction in Phoenix. / Dissertation/Thesis / M.S. Mechanical Engineering 2010
2

Phase Change Materials as a Thermal Storage Device for Passive Houses

Campbell, Kevin Ryan 01 January 2011 (has links)
This study describes a simulation-based approach for informing the incorporation of Phase Change Materials (PCMs) in buildings designed to the "Passive House" standard. PCMs provide a minimally invasive method of adding thermal mass to a building, thus mitigating overheating events. Phase change transition temperature, quantity, and location of PCM were all considered while incrementally adding PCM to Passive House simulation models in multiple climate zones across the United States. Whole building energy simulations were performed using EnergyPlus from the US Department of Energy. A prototypical Passive House with a 1500 Watt electric heater and no mechanical cooling was modeled. The effectiveness of the PCM was determined by comparing the zone-hours and zone-degree-hours outside the ASHRAE defined comfort zone for all PCM cases against a control simulation without PCM. Results show that adding PCM to Passive Houses can significantly increase thermal comfort so long as the house is in a dry or marine climate. The addition of PCM in moist climates will not significantly increase occupant comfort because the majority of discomfort in these climates arises due to latent load. For dry or marine climates, PCM has the most significant impact in climates with lower cooling degree-days, reducing by 93% the number of zone-hours outside of thermal comfort and by 98% the number of zone-degree-hours uncomfortable in Portland, Oregon. However, the application of PCM is not as well suited for very hot climates because the PCM becomes overcharged. Only single digit reductions in discomfort were realized when modeling PCM in a Passive House in Phoenix, Arizona. It was found that regardless of the climate PCM should be placed in the top floor, focusing on zones with large southern glazing areas. Also, selecting PCM with a melt temperature of 25°C resulted in the most significant increases in thermal comfort for the majority of climates studied.

Page generated in 0.018 seconds