• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multistationarity in (bio)chemical reaction networks with mass action kinetics model discrimination, robustness and beyond

Conradi, Carsten January 2008 (has links)
Zugl.: Berlin, Techn. Univ., Diss., 2008
2

Untersuchungen zur Verbesserung der biochemischen Umsatzrate lignocellulosehaltiger organischer Abfälle /

Radke, Dirk. January 2000 (has links)
Techn. Hochsch., Diss.--Aachen.
3

Uncertainty and robustness analysis of biochemical reaction networks via convex optimisation and robust control theory

Waldherr, Steffen January 1900 (has links)
Zugl.: Stuttgart, Univ., Diss.
4

Modellierung und Simulation von Kurzzeit-Ultra-Hochdruckprozessen

Rauh, Cornelia January 2008 (has links)
Zugl.: Erlangen, Nürnberg, Univ., Diss., 2008
5

Modellierung und Simulation von Kurzzeit-Ultra-Hochdruckprozessen /

Rauh, Cornelia. January 2009 (has links)
Zugl.: Erlangen-Nürnberg, Universiẗat, Diss., 2008.
6

Physical Aspects of Min Oscillations in Escherichia Coli

Meacci, Giovanni 25 January 2007 (has links) (PDF)
The subject of this thesis is the generation of spatial temporal structures in living cells. Specifically, we studied the Min-system in the bacterium Escherichia coli. It consists of the MinC, the MinD, and the MinE proteins, which play an important role in the correct selection of the cell division site. The Min-proteins oscillate between the two cell poles and thereby prevent division at these locations. In this way, E. coli divides at the center, producing two daughter cells of equal size, providing them with the complete genetic patrimony. Our goal is to perform a quantitative study, both theoretical and experimental, in order to reveal the mechanism underlying the Min-oscillations. Experimentally, we characterize theMin-system, measuring the temporal period of the oscillations as a function of the cell length, the time-averaged protein distributions, and the in vivo Min-protein mobility by means of different fluorescence microscopy techniques. Theoretically, we discuss a deterministic description based on the exchange of Minproteins between the cytoplasm and the cytoplasmic membrane and on the aggregation current induced by the interaction between membrane-bound proteins. Oscillatory solutions appear via a dynamic instability of the homogenous protein distributions. Moreover, we perform stochastic simulations based on a microscopic description, whereby the probability for each event is calculated according to the corresponding probability in the master equation. Starting from this microscopic description, we derive Langevin equations for the fluctuating protein densities which correspond to the deterministic equations in the limit of vanishing noise. Stochastic simulations justify this deterministic model, showing that oscillations are resistant to the perturbations induced by the stochastic reactions and diffusion. Predictions and assumptions of our theoretical model are compatible with our experimental findings. Altogether, these results enable us to propose further experiments in order to quantitatively compare the different models proposed so far and to test our model with even higher precision. They also point to the necessity of performing such an analysis through single cell measurements.
7

Physical Aspects of Min Oscillations in Escherichia Coli

Meacci, Giovanni 20 December 2006 (has links)
The subject of this thesis is the generation of spatial temporal structures in living cells. Specifically, we studied the Min-system in the bacterium Escherichia coli. It consists of the MinC, the MinD, and the MinE proteins, which play an important role in the correct selection of the cell division site. The Min-proteins oscillate between the two cell poles and thereby prevent division at these locations. In this way, E. coli divides at the center, producing two daughter cells of equal size, providing them with the complete genetic patrimony. Our goal is to perform a quantitative study, both theoretical and experimental, in order to reveal the mechanism underlying the Min-oscillations. Experimentally, we characterize theMin-system, measuring the temporal period of the oscillations as a function of the cell length, the time-averaged protein distributions, and the in vivo Min-protein mobility by means of different fluorescence microscopy techniques. Theoretically, we discuss a deterministic description based on the exchange of Minproteins between the cytoplasm and the cytoplasmic membrane and on the aggregation current induced by the interaction between membrane-bound proteins. Oscillatory solutions appear via a dynamic instability of the homogenous protein distributions. Moreover, we perform stochastic simulations based on a microscopic description, whereby the probability for each event is calculated according to the corresponding probability in the master equation. Starting from this microscopic description, we derive Langevin equations for the fluctuating protein densities which correspond to the deterministic equations in the limit of vanishing noise. Stochastic simulations justify this deterministic model, showing that oscillations are resistant to the perturbations induced by the stochastic reactions and diffusion. Predictions and assumptions of our theoretical model are compatible with our experimental findings. Altogether, these results enable us to propose further experiments in order to quantitatively compare the different models proposed so far and to test our model with even higher precision. They also point to the necessity of performing such an analysis through single cell measurements.

Page generated in 0.0793 seconds