• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Conversion of a batch biodiesel plant from homogeneous to heterogeneous catalysed process: modelling, optimisation and techno-economic analysis

Mbadinga, Monique Anais Bakoussou January 2015 (has links)
Most biodiesel plants operate batch-wise using homogeneous alkali catalysts. Recently, several heterogeneous catalysts have been suggested in literature, as they have shown potential for overcoming most of the challenges associated with the application of homogeneous catalysts. Previous published techno-economic comparisons of the two technologies on large-scale processes located in the developed world, have revealed the economic superiority of heterogeneously catalysed processes. Hence, prospect exists for current homogeneously catalysed process plants to be converted to heterogeneously catalysed ones. The objective of this research was to investigate the actual cost benefit of converting a small-scale batch biodiesel plant from homogeneous to heterogeneous catalysed process. For this purpose, a small-scale batch biodiesel plant located in South Africa was taken as the base case homogeneous process. Aspen Batch Process Developer® software was used to perform the process simulations. The homogeneous process was converted to the heterogeneous one and results from process simulation were used to evaluate the economics of both processes, which were compared in terms of fixed capital cost, total manufacturing cost and profitability indicators. During economic evaluation, two types of cost factors were used: one prevailing in developed world and the other one relevant to South Africa. The sensitivity analysis of both processes was further performed in order to investigate the impact of some uncertain parameters on their profitability. Finally, a debottlenecking study was carried out. Results obtained from this study showed an increase in the annual throughput of biodiesel as well as significant savings in the total capital cost for the heterogeneous catalysed process relative to the homogeneous one. As regards the estimation of the total unit manufacturing cost of biodiesel, significant differences arose when using the two types of cost factors. Results of economic analyses estimated using cost factors relative to South Africa suggest an increase in the unit manufacturing cost of biodiesel while using the developed world’s cost factors suggests the opposite. This is due to the higher raw material and energy requirement for the CaO process, while knowing that the direct costs are a bigger proportion of the manufacturing costs estimated using the South African cost factors. Profitability and sensitivity analyses only provided positive results when estimated using the South African cost factors. In all cases, the heterogeneous catalysed process was found to be more promising than the homogeneous one over the prescribed project life. The study showed the importance of using cost factors relevant to a particular economic environment during techno-economic assessment of a process. It was also shown that there are economic benefits when replacing settling with centrifugation in biodiesel production processes. In summary, this thesis makes some important contributions. It presents the first process simulation for biodiesel production using Aspen Batch Process Developer® software and thereby proposes a methodology that is currently scarce in the literature. It also reports the first techno-economic analysis applied to the biodiesel field in South Africa and provides a preliminary insight to owners of biodiesel plants as regards the decision to convert or not their homogeneous catalysed plant to heterogeneous one.
2

Conversion of a batch biodiesel plant from homogeneous to heterogeneous catalysed process: modelling, optimisation and techno-economic analysis

Mbadinga, Monique Anais Bakoussou January 2015 (has links)
Thesis submitted in fulfilment of the requirements for the degree Master Technologiae: Chemical Engineering In the Faculty of Engineering at Cape Peninsula University of Technology / Most biodiesel plants operate batch-wise using homogeneous alkali catalysts. Recently, several heterogeneous catalysts have been suggested in literature, as they have shown potential for overcoming most of the challenges associated with the application of homogeneous catalysts. Previous published techno-economic comparisons of the two technologies on large-scale processes located in the developed world, have revealed the economic superiority of heterogeneously catalysed processes. Hence, prospect exists for current homogeneously catalysed process plants to be converted to heterogeneously catalysed ones. The objective of this research was to investigate the actual cost benefit of converting a small-scale batch biodiesel plant from homogeneous to heterogeneous catalysed process. For this purpose, a small-scale batch biodiesel plant located in South Africa was taken as the base case homogeneous process. Aspen Batch Process Developer® software was used to perform the process simulations. The homogeneous process was converted to the heterogeneous one and results from process simulation were used to evaluate the economics of both processes, which were compared in terms of fixed capital cost, total manufacturing cost and profitability indicators. During economic evaluation, two types of cost factors were used: one prevailing in developed world and the other one relevant to South Africa. The sensitivity analysis of both processes was further performed in order to investigate the impact of some uncertain parameters on their profitability. Finally, a debottlenecking study was carried out. Results obtained from this study showed an increase in the annual throughput of biodiesel as well as significant savings in the total capital cost for the heterogeneous catalysed process relative to the homogeneous one. As regards the estimation of the total unit manufacturing cost of biodiesel, significant differences arose when using the two types of cost factors. Results of economic analyses estimated using cost factors relative to South Africa suggest an increase in the unit manufacturing cost of biodiesel while using the developed world’s cost factors suggests the opposite. This is due to the higher raw material and energy requirement for the CaO process, while knowing that the direct costs are a bigger proportion of the manufacturing costs estimated using the South African cost factors. Profitability and sensitivity analyses only provided positive results when estimated using the South African cost factors. In all cases, the heterogeneous catalysed process was found to be more promising than the homogeneous one over the prescribed project life. The study showed the importance of using cost factors relevant to a particular economic environment during techno-economic assessment of a process. It was also shown that there are economic benefits when replacing settling with centrifugation in biodiesel production processes. In summary, this thesis makes some important contributions. It presents the first process simulation for biodiesel production using Aspen Batch Process Developer® software and thereby proposes a methodology that is currently scarce in the literature. It also reports the first techno-economic analysis applied to the biodiesel field in South Africa and provides a preliminary insight to owners of biodiesel plants as regards the decision to convert or not their homogeneous catalysed plant to heterogeneous one.
3

Estudo de viabilidade técnica, econômica e ambiental preliminar da aplicação da tecnologia de Tratamento Térmico de Resíduos e Materiais Multifásicos-TTRM a resíduos de terra diatomácea de usina genérica de produção de biodiesel. / Feasibility study of multiphase waste and material thermal treatment technology applied to diatomaceous earth waste generated from a generic biodiesel production plant.

Luiz Augusto de Oliveira Costa 14 March 2014 (has links)
O cenário mundial de matriz energética apresenta dados crescentes de contribuição das energias renováveis. No Brasil, o governo tem realizado esforços para aumento da parcela de combustíveis renováveis, e com isso isso também para o aumento da produção de biodiesel. O principal processo de fabricação de biodiesel com seu polimento em via seca gera quantidades significativas de resíduos, dentre eles, o resíduo de terra diatomácea, com potenciais características de inflamabilidade. Em contrapartida existe a Política Nacional de Resíduos Sólidos com objetivos de não geração, redução, reutilização, reciclagem e redução de periculosidade dos resíduos, e envio para aterro somente de resíduos sem qualquer possibilidade viável de tratamento. O presente trabalho objetiva realizar um estudo de viabilidade técnica, econômica e ambiental preliminar da aplicação da tecnologia de Tratamento Térmico de Resíduos e Materiais Multifásicos - TTRM a resíduo de terra diatomácea - RTD de usina genérica de biodiesel. Foram utilizados como base para o estudo: os resultados dos testes da PETROBRAS e da ALBRECHT realizados em escala de bancada de laboratório e em planta piloto que simularam a aplicação do TTRM ao RTD; premissas técnicas; premissas operacionais; e dados econômicos de referência. Foram estabelecidos cenários específicos para o estudo da aplicabilidade e realizada análise de sensibilidade para os principais fatores da composição dos custos. Observou-se para este estudo preliminar que: na dimensão técnica o TTRM demonstrou ser aplicável; na dimensão econômica, os indicadores são positivos em sua totalidade no cenário esperado, mesmo após análise de sensibilidade com variações de 25% dos principais parâmetros de entrada do estudo de viabilidade; na dimensão ambiental o TTRM demonstrou ser uma alternativa que incorpora os conceitos para uma gestão alinhada com a Política Nacional de Resíduos Sólidos, seja na redução da periculosidade do resíduo, na potencial minimização da geração dos resíduos ou no reuso e reaproveitamento resíduos. / Renewable energy has played an ever increasing role in the global energy matrix. In Brazil, the public administration has shown efforts to increase the share of renewable fuels and the biodiesel production. The Brazilian National Waste Policy has among its goals non-generation, minimization, reuse, recycling and hazard reduction of waste, considering the alternative of landfill disposal only where waste treatment is not viable. However, the final filtering process in biodiesel production can generate a great amount of waste, including diatomaceous earth waste with significant inflammable characteristic. This work conducts a feasibility study of Multiphase Waste and Materials Thermal Treatment technology applied to diatomaceous earth waste generated from a generic biodiesel production plant. The present study has been based on: the results of diatomaceous earth waste thermal treatment tests performed by PETROBRAS and ALBRECHT both on laboratory and pilot scales; Technical and operational assumptions; and economic reference data. Specific scenarios were established to study the applicability and sensitivity analysis where performed for key factors of costs composition. The study concluded that thermal treatment is technically applicable to diatomaceous earth waste. In the economic dimension all indicators were be positive even where variations of 25% were introduced into the main input parameters. In the environmental dimension the Multiphase Waste Thermal Treatment of diatomaceous earth waste proved to be aligned with the Brazilian National Waste Policy, with regard to hazard reduction and minimization of waste generation as well as improving the potential for waste reuse.
4

Estudo de viabilidade técnica, econômica e ambiental preliminar da aplicação da tecnologia de Tratamento Térmico de Resíduos e Materiais Multifásicos-TTRM a resíduos de terra diatomácea de usina genérica de produção de biodiesel. / Feasibility study of multiphase waste and material thermal treatment technology applied to diatomaceous earth waste generated from a generic biodiesel production plant.

Luiz Augusto de Oliveira Costa 14 March 2014 (has links)
O cenário mundial de matriz energética apresenta dados crescentes de contribuição das energias renováveis. No Brasil, o governo tem realizado esforços para aumento da parcela de combustíveis renováveis, e com isso isso também para o aumento da produção de biodiesel. O principal processo de fabricação de biodiesel com seu polimento em via seca gera quantidades significativas de resíduos, dentre eles, o resíduo de terra diatomácea, com potenciais características de inflamabilidade. Em contrapartida existe a Política Nacional de Resíduos Sólidos com objetivos de não geração, redução, reutilização, reciclagem e redução de periculosidade dos resíduos, e envio para aterro somente de resíduos sem qualquer possibilidade viável de tratamento. O presente trabalho objetiva realizar um estudo de viabilidade técnica, econômica e ambiental preliminar da aplicação da tecnologia de Tratamento Térmico de Resíduos e Materiais Multifásicos - TTRM a resíduo de terra diatomácea - RTD de usina genérica de biodiesel. Foram utilizados como base para o estudo: os resultados dos testes da PETROBRAS e da ALBRECHT realizados em escala de bancada de laboratório e em planta piloto que simularam a aplicação do TTRM ao RTD; premissas técnicas; premissas operacionais; e dados econômicos de referência. Foram estabelecidos cenários específicos para o estudo da aplicabilidade e realizada análise de sensibilidade para os principais fatores da composição dos custos. Observou-se para este estudo preliminar que: na dimensão técnica o TTRM demonstrou ser aplicável; na dimensão econômica, os indicadores são positivos em sua totalidade no cenário esperado, mesmo após análise de sensibilidade com variações de 25% dos principais parâmetros de entrada do estudo de viabilidade; na dimensão ambiental o TTRM demonstrou ser uma alternativa que incorpora os conceitos para uma gestão alinhada com a Política Nacional de Resíduos Sólidos, seja na redução da periculosidade do resíduo, na potencial minimização da geração dos resíduos ou no reuso e reaproveitamento resíduos. / Renewable energy has played an ever increasing role in the global energy matrix. In Brazil, the public administration has shown efforts to increase the share of renewable fuels and the biodiesel production. The Brazilian National Waste Policy has among its goals non-generation, minimization, reuse, recycling and hazard reduction of waste, considering the alternative of landfill disposal only where waste treatment is not viable. However, the final filtering process in biodiesel production can generate a great amount of waste, including diatomaceous earth waste with significant inflammable characteristic. This work conducts a feasibility study of Multiphase Waste and Materials Thermal Treatment technology applied to diatomaceous earth waste generated from a generic biodiesel production plant. The present study has been based on: the results of diatomaceous earth waste thermal treatment tests performed by PETROBRAS and ALBRECHT both on laboratory and pilot scales; Technical and operational assumptions; and economic reference data. Specific scenarios were established to study the applicability and sensitivity analysis where performed for key factors of costs composition. The study concluded that thermal treatment is technically applicable to diatomaceous earth waste. In the economic dimension all indicators were be positive even where variations of 25% were introduced into the main input parameters. In the environmental dimension the Multiphase Waste Thermal Treatment of diatomaceous earth waste proved to be aligned with the Brazilian National Waste Policy, with regard to hazard reduction and minimization of waste generation as well as improving the potential for waste reuse.

Page generated in 0.0678 seconds