Spelling suggestions: "subject:"bioelectronique"" "subject:"bioélectronique""
1 |
Le diamant pour la bioélectronique : de la fonctionnalisation chimique à la modification physique par des nanotubes de carbone / Carbon nanotubes grown on diamond, new composite material for bioelectronicRuffinatto, Sébastien 10 February 2012 (has links)
Le contexte scientifique de cette thèse s'inscrit dans le domaine de la bioélectronique et l'objectif vise la mise au point de dispositifs diamant pour des applications en chimie analytique, diagnostic clinique ou encore dans le domaine médical. Un des axes de travail est basé sur la mise au point d'une nouvelle technique de fonctionnalisation du diamant hydrogéné. Cette méthode est rapide, simple, mono-étape et ne nécessite pas d'apport extérieur d'énergie. La caractérisation du greffage par FTIR a permis de proposer un mécanisme réactionnel qui a été corroboré par l'étude de la cinétique réactionnelle. Nous avons mis en évidence que ce procédé permet l'obtention d'une liaison covalente stable carbone-carbone. Elle se révèle particulièrement adaptée à l'immobilisation directe d'espèces biologiques. En utilisant cette technique de greffage, il a été possible de concevoir des biopuces à ADN et protéines, ainsi qu'un biocapteur au peroxyde d'hydrogène de troisième génération. Enfin, le procédé étant basé sur la simple mise en contact de la solution de greffage avec le substrat, il est possible de structurer les dépôts à l'échelle nanométrique en faisant appel au Dip-Pen Nanolithography. En parallèle, un nouveau matériau composite diamant/nanotubes de carbone a été mis au point pour augmenter la surface développée des électrodes de diamant dopé au bore et en accroitre ainsi les performances. Dans ce cadre, une technique de gravure catalytique assistée par filament chaud a été utilisée pour enterrer des nanoparticules dans la couche diamant. Ces dernières assurent par la suite la croissance des nanotubes de carbone par dépôt chimique en phase vapeur. Cette méthodologie assure ainsi une meilleure adhérence des nanotubes sur leur substrat et permet de pallier aux problèmes de toxicité des nanotubes vis-à-vis des milieux biologiques. / The scientific context of this thesis is related to the field of bioelectronics. The objective is the development of diamond devices for applications in analytical chemistry, clinical diagnostic or medical devices. One of the axes deals with a new technique of functionalization of hydrogenated diamond surface. This method is fast, simple, one step and does not require contribution of exogenous energy. The characterization of the grafting by FTIR allowed us to suggest a mechanism which was confirmed by the study of the reaction kinetic. We brought to light that this process ensures the achievement of a stable covalent carbon-carbon bond. This methodology is particularly well adapted to the direct immobilization of biological species. By using this grafting technic, it was possible to design DNA and proteins biochips, as well as a hydrogen peroxide third generation biosensor. Finally, the process being based on the simple stake in contact of the grafting solution with the substrate, it is possible to structure functionalized areas at the nanometric scale using Dip-Pen Nanolithography. In parallel, a new composite diamond /carbon nanotubes material was developed to increase the specific surface of the boron doped diamond electrodes and so to increase its efficiency. In this frame, a new technic of catalytic etching assisted by hot filament was used to embed nanoparticles in the diamond layer. This process allowed afterward the growth of the carbon nanotubes by chemical vapor deposition. This methodology ensures markedly enhanced adhesion of the nanotubes on their substrate and obviates the problems of nanotubes toxicity towards their biological environment.
|
2 |
Le diamant pour la bioélectronique : de la fonctionnalisation chimique à la modification physique par des nanotubes de carboneRuffinatto, Sebastien 10 February 2012 (has links) (PDF)
Le contexte scientifique de cette thèse s'inscrit dans le domaine de la bioélectronique et l'objectif vise la mise au point de dispositifs diamant pour des applications en chimie analytique, diagnostic clinique ou encore dans le domaine médical. Un des axes de travail est basé sur la mise au point d'une nouvelle technique de fonctionnalisation du diamant hydrogéné. Cette méthode est rapide, simple, mono-étape et ne nécessite pas d'apport extérieur d'énergie. La caractérisation du greffage par FTIR a permis de proposer un mécanisme réactionnel qui a été corroboré par l'étude de la cinétique réactionnelle. Nous avons mis en évidence que ce procédé permet l'obtention d'une liaison covalente stable carbone-carbone. Elle se révèle particulièrement adaptée à l'immobilisation directe d'espèces biologiques. En utilisant cette technique de greffage, il a été possible de concevoir des biopuces à ADN et protéines, ainsi qu'un biocapteur au peroxyde d'hydrogène de troisième génération. Enfin, le procédé étant basé sur la simple mise en contact de la solution de greffage avec le substrat, il est possible de structurer les dépôts à l'échelle nanométrique en faisant appel au Dip-Pen Nanolithography. En parallèle, un nouveau matériau composite diamant/nanotubes de carbone a été mis au point pour augmenter la surface développée des électrodes de diamant dopé au bore et en accroitre ainsi les performances. Dans ce cadre, une technique de gravure catalytique assistée par filament chaud a été utilisée pour enterrer des nanoparticules dans la couche diamant. Ces dernières assurent par la suite la croissance des nanotubes de carbone par dépôt chimique en phase vapeur. Cette méthodologie assure ainsi une meilleure adhérence des nanotubes sur leur substrat et permet de pallier aux problèmes de toxicité des nanotubes vis-à-vis des milieux biologiques.
|
3 |
Novel in vitro models for pathogen detection based on organic transistors integrated with living cells. / Integration de cellules avec des transistors organiques pour la detection rapide de pathogenes et toxinesTria, Scherrine 18 October 2013 (has links)
L’épithélium intestinal est un exemple de tissu qui a évolué pour former une barrière. Cette barrière limite le passage de produits toxiques d’agents pathogènes à partir de la lumière vers les tissus, tout en absorbant les nutriments, électrolytes et l'eau nécessaire à l'hôte. Les jonctions serrées sont des structures qui limitent le passage de la matière à travers l'espace intercellulaire. La capacité de mesurer le transport à travers cette barrière est d'une importance capitale car elle fournit des renseignements sur l’état de celle-ci, révélatrice de certains états pathologiques, puisque la perturbation ou dysfonctionnement des jonctions serrées est souvent due à ou est un indicatif de toxicité ou de maladie. En outre, le degré d'intégrité de la barrière est un indicateur clé de la pertinence d'un modèle in vitro particulier pour une utilisation en toxicologie et screening de médicaments. L'avènement de l'électronique organique a créé une occasion unique pour connecter les mondes de l'électronique et de la biologie, à l'aide des dispositifs tels que le transistor électrochimique organique (OECT), qui fournisse un moyen très sensible pour détecter des courants ioniques. Ces dispositifs ont une sensibilité sans précédent, dans un format qui peut être produit en masse à faible coût.Le but de cette étude était d'intégrer une couche de cellules représentative de la barrière gastro intestinale avec des OECTs, pour créer des dispositifs qui permettent de détecter les perturbations de cette barrière d’une manière rapide et sensible. Cette technique a était démontrée pour être au minimum aussi sensible mais d’une rapidité supérieure que les techniques actuelles sur le marché. / In biological systems, different tissues have evolved to form a barrier. An example is the intestinal epithelium, consisting of a single layer of cells lining the wall of the stomach and colon. It restricts the passage of harmful chemicals or pathogens from the light into the tissue, while selectively absorbing the most nutrients, electrolytes and water are necessary for the host. Tight junctions are structures which limit the passage of the material through the space between the cells. The ability to measure the paracellular and transcellular transport is of vital importance because it provides a wealth of information on the state of the barrier, indicative of certain disease states , since the disruption or malfunction of the structures involved in the transport through the tissue barrier is often caused or is indicative of toxicity or disease. In addition, the degree of integrity of the barrier is a key indicator of the relevance of a particular model in vitro for use in toxicology and drug screening. The advent of organic electronics has created a unique opportunity to connect the worlds of electronics and biology, using devices such as organic electrochemical transistor (OECT), which provides a very sensitive way to detect ionic currents. These devices have unprecedented sensitivity in a format that can be mass produced at low cost.The purpose of this study was to integrate a monolayer of cells representative of the gastro intestinal barrier with OECTs , to create devices that detect disruptions of the barrier in a timely and sensitive manner. This technique was demonstrated to be at least as sensitive, but a higher speed than current techniques on the market
|
4 |
Conducting polymer devices for biolectronics / Application des polymères conducteurs en bioélectroniqueKhodagholy Araghy, Dion 27 September 2012 (has links)
Pas de résumé en français seulement en anglais / The emergence of organic electronics – a technology that relies on carbon-based semiconductors to deliver devices with unique properties – represents one of the most dramatic developments of the past two decades. A rapidly emerging new direction in the field involves the interface with biology. The “soft” nature of organics offers better mechanical compatibility with tissue than traditional electronic materials, while their natural compatibility with mechanically flexible substrates suits the non-planar form factors often required for implants. More importantly, their ability to conduct ions in addition to electrons and holes opens up a new communication channel with biology. The coupling of electronics with living tissue holds the key to a variety of important life-enhancing technologies. One example is bioelectronic implants that record neural signals and/or electrically stimulate neurons. These devices offer unique opportunities to understand and treat conditions such as hearing and vision loss, epilepsy, brain degenerative diseases, and spinal cord injury.The engineering aspect of the work includes the development of a photolithographic process to integrate the conducting polymer poly(3,4-ethylenedioxythiophene: poly(styrene sulfonate) (PEDOT:PSS) with parylene C supports to make an active device. The technology is used to fabricate electrocorticography (ECoG) probes, high-speed transistors and wearable biosensors. The experimental work explores the fundamentals of communication at the interface between conducting polymers and the brain. It is shown that conducting polymers outperform conventional metallic electrodes for brain signals recording.Organic electrochemical transistors (OECTs) represent a step beyond conducting polymer electrodes. They consist of a conducting polymer channel in contact with an electrolyte. When a gate electrode excites an ionic current in the electrolyte, ions enter the polymer film and change its conductivity. Since a small amount of ions can effectively “block” the transistor channel, these devices offer significant amplification in ion-to-electron transduction. Using the developed technology a high-speed and high-density OECTs array is presented. The dense architecture of the array improves the resolution of the recording from neural networks and the transistors temporal response are 100 μs, significantly faster than the action potential. The experimental transistor responses are fit and modeled in order to optimize the gain of the transistor. Using the model, an OECT with two orders of magnitude higher normalized transconductance per channel width is fabricated as compared to Silicon-based field effect transistors. Furthermore, the OECTs are integrated to a highly conformable ECoG probe. This is the first time that a transistor is used to record brain activities in vivo. It shows a far superior signal-to-noise-ratio (SNR) compare to electrodes. The high SNR of the OECT recordings enables the observation of activities from the surface of the brain that only a perpetrating probe can record. Finally, the application of OECTs for biosensing is explored. The bulk of the currently available biosensors often require complex liquid handling, and thus suffer from problems associated with leakage and contamination. The use of an organic electrochemical transistor for detection of lactate by integration of a room temperature ionic liquid in a gel-format, as a solid-state electrolyte is demonstrated.
|
Page generated in 0.0591 seconds