Spelling suggestions: "subject:"biofilm bacterial"" "subject:"kinofilm bacterial""
1 |
Surface attachment behaviour in Rhodobacter sphaeroidesChacko, Sarah Jane January 2013 (has links)
Motility and chemotaxis have been implicated in the process of biofilm formation in a wide range of species. Using a combination of microscopy and image analysis, genetics, microbiology and biochemistry, the initial approach of Rhodobacter sphaeroides cells to a solid surface has been characterised. Interestingly, these data suggest that for R. sphaeroides alterations in motility and swimming behaviour may result in differences in biofilm formation simply by changing the number of cells which reach the surface. This is in contrast to a few other well-studied species where the motility apparatus, the flagellum, has been shown to play an active role in surface sensing and the transition to biofilm growth. Tracking swimming cells and measuring surface attachment revealed that changes in motility affect the ability of cells to attach to a surface, with non-motile cells attaching least and mutants with frequent stops attaching less than smooth swimming cells with few stops. Tracking attaching cells and classifying their method of attachment revealed that flagellar tethering is not essential for R. sphaeroides attachment. Competition assays with fluorescently labelled strains showed that the initial imbalance between motile and non-motile cells remains as microcolonies develop over 48 hours,and the proportion of non-motile cells remains fairly constant. Development on a surface over 48 hours was similar for motile and non-motile strains, including aflagellate strains, once attached. Using parameters calculated by tracking swimming cells to calculate the effective diffusion coefficient in a simple model of cell movement suggested that motion alone could explain the differences in attachment without assuming different cell properties. In particular, aflagellate strains might be hindered from surface attachment by their reduced motility alone. This is interesting since some other bacterial species use the flagellum as a surface sensor.
|
2 |
Estudos estruturais e funcionais de STM3615 de Salmonella enterica: uma proteína contendo ambos os domínios GGDEF-EAL envolvidos na biossíntese de c-di-GMP / Structural and functional studies of STM3615 from Salmonella enterica: a GGDEF-EAL-containing protein involved in c-di-GMP biosynthesisFlávio Rodolfo Rosseto 12 December 2016 (has links)
A formação de biofilmes bacterianos é um fenômeno bem conhecido, caracterizado pela formação de uma comunidade bacteriana estática, embebida em uma matriz exopolimérica, regulada pela molécula sinalizadora c-di-GMP. Os domínios proteicos que catalisam a síntese (GGDEF) e degradação (EAL e HD-GYP) de c-di-GMP estão presentes em grande quantidade em quase todos os genomas bacterianos sequenciados até hoje. Dentre as diversas proteínas envolvidas nas vias de sinalização mediadas por esse nucleotídeo, uma grande parcela são proteínas transmembranares que possuem ambos domínios GGDEF e EAL. Funcionalmente, esses domínios se apresentam em todas combinações: ambos degenerados ou conservados e combinações GGDEF-degenerado/EAL-conservado ou vice-versa. Enquanto que domínios conservados potencialmente apresentam atividade catalítica, os degenerados geralmente convertem-se em domínios estruturais ou receptores de c-di-GMP. Embora recentes estudos estruturais revelaram detalhes de proteínas com ambos domínios degenerados (LapD) ou ativos (MorA), pouco se sabe sobre uma das combinações mais representativas: GGDEF-degenerado/EAL-conservado. Nesse trabalho, realizamos um estudo estrutural e funcional da proteína STM3615 de Salmonella enterica, que apresenta um domínio periplasmático de função desconhecida, seguido pelos domínios citoplasmáticos HAMP, GGDEF-degenerado e EAL-conservado. Através de diferentes construções citoplasmáticas solúveis de STM3615, confirmamos que essa proteína apresenta atividade fosfodiesterase, mesmo quando o domínio EAL encontra-se isolado. Corroborando com sua atividade catalítica, estudos em solução, tais como SAXS e cromatografia de exclusão molecular, mostraram que o EAL isolado de STM3615 é dimérico, um pré-requisito para ser ativo. Utilizando uma construção com os domínios GGDEF-EAL determinamos sua estrutura cristalográfica a uma resolução de 2,5 Å. Comparada com proteínas de arquitetura próxima, como o receptor de c-di-GMP LapD de Pseudomonas fluorescens, ou a enzima bifuncional MorA de Pseudomonas aeruginosa, sua estrutura se assemelha muito mais a essa última. Em particular, a hélice que conecta os domínios GGDEF e EAL possui a mesma extensão que a de MorA, maiores que a encontrada em LapD. Como a hélice pequena de LapD está relacionada com sua plasticidade conformacional interdomínios, a estrutura apresentada nesse trabalho sugere as proteínas dual domain cataliticamente ativas (EAL-mono ou bifuncionais) sejam estruturalmente rígidas. Combinando esses resultados com uma análise computacional feita em outras 150 sequências representativas de proteínas dual domain, propomos mecanismos catalíticos distintos para as enzimas bifuncionais e as EAL-monofuncionais. Enquanto que essas últimas formam dímeros estáveis através do domínio EAL, numa conformação apta para interagir e degradar c-di-GMP, as enzimas bifuncionais apresentam transições oligoméricas mediadas por interação de c-di-GMP com EAL, impondo atividades ciclase (GGDEF) e fosfodiesterase (EAL) excludentes. Por fim, baseados nesses mecanismos e na arquitetura de STM3615, ainda especulamos mecanismos funcionais in vivo compatíveis com o tema emergente de interações proteicas e localização do sinal nas vias de sinalização mediadas por c-di-GMP. / The formation of bacterial biofilms is a well-established phenomenon regulated by the signaling molecule c-di-GMP, characterized by the establishment of a static bacterial community embedded in a exopolymeric matrix. The domains responsible for the synthesis (GGDEF) or degradation (EAL and HD-GYP) of c-di-GMP are present in multiple proteins in nearly all bacterial genomes sequenced to date. Among the multiple and structurally diverse proteins involved in c-di-GMP signaling and biosynthesis, a large class are transmembrane proteins bearing both EAL and GGDEF domains. Functionally, these domains are presented in all combinations: both degenerate or conserved and combinations GGDEF-degenerated/EAL-conserved or vice versa. While the predicted conserved domains exhibit catalytic activity, the degenerate usually converted into structural domains or c-di-GMP receptors. While structural studies have revealed details of proteins with both domains degenerated (LapD) or conserved (MorA), little is known about one of the most representative combinations: GGDEF-degenerated/EAL-conserved. In this work, we conducted a structural and functional study of Salmonella enterica STM3615 protein, which has a periplasmic domain of unknown function, followed by cytoplasmic domains HAMP, GGDEF-degenerated and EAL-conserved. Through different soluble cytoplasmic constructs of STM3615, we confirmed that this protein has phosphodiesterase activity, even with the isolated EAL domain. In agreement with its catalytic activity, solution studies, such as SAXS and size exclusion chromatography, showed that STM3615 isolated EAL is dimeric, a prerequisite for phosphodiesterase activity. Using a construct with the isolated EAL-GGDEF domains, we determine its crystal structure to a resolution of 2.5 Å. Compared to the architectural closed c-di-GMP receptor LapD from Pseudomonas fluorescens and the bifunctional enzyme MorA from Pseudomonas aeruginosa, STM3615 structure is more similar to the latter. In particular, the α-helix connecting the domains GGDEF and EAL has similar extension, longer than the helix found in LapD. Given that this helix in LapD is essential for its inter-domain conformational plasticity, the structure presented in this study suggests the dual domain catalytically active proteins are structurally rigid. Combining these results with a computational analysis with 150 representative sequences containing the tandem GGDEF-EAL domains, we propose distinct catalytic mechanisms for bifunctional and monofunctional EAL enzymes. While the latter form stable dimers through the EAL domain, a conformation prompted to interact and degrade c-di-GMP, the bifunctional enzymes present oligomeric transitions mediated by interaction of c-di-GMP with EAL domain, imposing excluding cyclase (GGDEF) or phosphodiesterase (EAL) activities. Finally, based on these mechanisms and STM3615 architecture, we also speculated about functional mechanisms in vivo consistent with the emerging theme of protein interactions and localized signal involved in signaling pathways mediated by c-di-GMP.
|
3 |
Estudos estruturais e funcionais de STM3615 de Salmonella enterica: uma proteína contendo ambos os domínios GGDEF-EAL envolvidos na biossíntese de c-di-GMP / Structural and functional studies of STM3615 from Salmonella enterica: a GGDEF-EAL-containing protein involved in c-di-GMP biosynthesisRosseto, Flávio Rodolfo 12 December 2016 (has links)
A formação de biofilmes bacterianos é um fenômeno bem conhecido, caracterizado pela formação de uma comunidade bacteriana estática, embebida em uma matriz exopolimérica, regulada pela molécula sinalizadora c-di-GMP. Os domínios proteicos que catalisam a síntese (GGDEF) e degradação (EAL e HD-GYP) de c-di-GMP estão presentes em grande quantidade em quase todos os genomas bacterianos sequenciados até hoje. Dentre as diversas proteínas envolvidas nas vias de sinalização mediadas por esse nucleotídeo, uma grande parcela são proteínas transmembranares que possuem ambos domínios GGDEF e EAL. Funcionalmente, esses domínios se apresentam em todas combinações: ambos degenerados ou conservados e combinações GGDEF-degenerado/EAL-conservado ou vice-versa. Enquanto que domínios conservados potencialmente apresentam atividade catalítica, os degenerados geralmente convertem-se em domínios estruturais ou receptores de c-di-GMP. Embora recentes estudos estruturais revelaram detalhes de proteínas com ambos domínios degenerados (LapD) ou ativos (MorA), pouco se sabe sobre uma das combinações mais representativas: GGDEF-degenerado/EAL-conservado. Nesse trabalho, realizamos um estudo estrutural e funcional da proteína STM3615 de Salmonella enterica, que apresenta um domínio periplasmático de função desconhecida, seguido pelos domínios citoplasmáticos HAMP, GGDEF-degenerado e EAL-conservado. Através de diferentes construções citoplasmáticas solúveis de STM3615, confirmamos que essa proteína apresenta atividade fosfodiesterase, mesmo quando o domínio EAL encontra-se isolado. Corroborando com sua atividade catalítica, estudos em solução, tais como SAXS e cromatografia de exclusão molecular, mostraram que o EAL isolado de STM3615 é dimérico, um pré-requisito para ser ativo. Utilizando uma construção com os domínios GGDEF-EAL determinamos sua estrutura cristalográfica a uma resolução de 2,5 Å. Comparada com proteínas de arquitetura próxima, como o receptor de c-di-GMP LapD de Pseudomonas fluorescens, ou a enzima bifuncional MorA de Pseudomonas aeruginosa, sua estrutura se assemelha muito mais a essa última. Em particular, a hélice que conecta os domínios GGDEF e EAL possui a mesma extensão que a de MorA, maiores que a encontrada em LapD. Como a hélice pequena de LapD está relacionada com sua plasticidade conformacional interdomínios, a estrutura apresentada nesse trabalho sugere as proteínas dual domain cataliticamente ativas (EAL-mono ou bifuncionais) sejam estruturalmente rígidas. Combinando esses resultados com uma análise computacional feita em outras 150 sequências representativas de proteínas dual domain, propomos mecanismos catalíticos distintos para as enzimas bifuncionais e as EAL-monofuncionais. Enquanto que essas últimas formam dímeros estáveis através do domínio EAL, numa conformação apta para interagir e degradar c-di-GMP, as enzimas bifuncionais apresentam transições oligoméricas mediadas por interação de c-di-GMP com EAL, impondo atividades ciclase (GGDEF) e fosfodiesterase (EAL) excludentes. Por fim, baseados nesses mecanismos e na arquitetura de STM3615, ainda especulamos mecanismos funcionais in vivo compatíveis com o tema emergente de interações proteicas e localização do sinal nas vias de sinalização mediadas por c-di-GMP. / The formation of bacterial biofilms is a well-established phenomenon regulated by the signaling molecule c-di-GMP, characterized by the establishment of a static bacterial community embedded in a exopolymeric matrix. The domains responsible for the synthesis (GGDEF) or degradation (EAL and HD-GYP) of c-di-GMP are present in multiple proteins in nearly all bacterial genomes sequenced to date. Among the multiple and structurally diverse proteins involved in c-di-GMP signaling and biosynthesis, a large class are transmembrane proteins bearing both EAL and GGDEF domains. Functionally, these domains are presented in all combinations: both degenerate or conserved and combinations GGDEF-degenerated/EAL-conserved or vice versa. While the predicted conserved domains exhibit catalytic activity, the degenerate usually converted into structural domains or c-di-GMP receptors. While structural studies have revealed details of proteins with both domains degenerated (LapD) or conserved (MorA), little is known about one of the most representative combinations: GGDEF-degenerated/EAL-conserved. In this work, we conducted a structural and functional study of Salmonella enterica STM3615 protein, which has a periplasmic domain of unknown function, followed by cytoplasmic domains HAMP, GGDEF-degenerated and EAL-conserved. Through different soluble cytoplasmic constructs of STM3615, we confirmed that this protein has phosphodiesterase activity, even with the isolated EAL domain. In agreement with its catalytic activity, solution studies, such as SAXS and size exclusion chromatography, showed that STM3615 isolated EAL is dimeric, a prerequisite for phosphodiesterase activity. Using a construct with the isolated EAL-GGDEF domains, we determine its crystal structure to a resolution of 2.5 Å. Compared to the architectural closed c-di-GMP receptor LapD from Pseudomonas fluorescens and the bifunctional enzyme MorA from Pseudomonas aeruginosa, STM3615 structure is more similar to the latter. In particular, the α-helix connecting the domains GGDEF and EAL has similar extension, longer than the helix found in LapD. Given that this helix in LapD is essential for its inter-domain conformational plasticity, the structure presented in this study suggests the dual domain catalytically active proteins are structurally rigid. Combining these results with a computational analysis with 150 representative sequences containing the tandem GGDEF-EAL domains, we propose distinct catalytic mechanisms for bifunctional and monofunctional EAL enzymes. While the latter form stable dimers through the EAL domain, a conformation prompted to interact and degrade c-di-GMP, the bifunctional enzymes present oligomeric transitions mediated by interaction of c-di-GMP with EAL domain, imposing excluding cyclase (GGDEF) or phosphodiesterase (EAL) activities. Finally, based on these mechanisms and STM3615 architecture, we also speculated about functional mechanisms in vivo consistent with the emerging theme of protein interactions and localized signal involved in signaling pathways mediated by c-di-GMP.
|
4 |
Optimalizace metody vedoucí k hodnocení citlivosti biofilm formujících stafylokoků vůči kandidátním antimikrobním látkám / Optimization of the method for sensitivity evaluation of biofilm-forming staphylococci against candidate antimicrobial compoundsDiepoltová, Adéla January 2019 (has links)
Charles University Faculty of Pharmacy in Hradec Králové Study program: Healthcare Bioanalytics Author: Bc. Adéla Diepoltová Supervisor: RNDr. Klára Konečná, Ph.D. Title of thesis: Optimization of the method for sensitivity evaluation of biofilm- forming staphylococci against candidate antimicrobial compounds Background: The aim of this thesis was to optimize approach for in vitro formation of staphylococcal biofilms on the pegs and on the wells of the 96-well panel as an analogous approach to commercially available Calgary Biofilm Device system. The aim of the Experiment 1 was to evaluate incubation conditions (such as impact of a growth medium, incubation mode, optical density of the starting bacterial inoculum and type of surface) leading to maximal biofilm formation of two biofilm producer strains with unknown biofilm phenotype and one staphylococcal strain known as strong biofilm producer. The most advisable conditions were used in incubation process of Experiment 2. This work should propose the approach leading to in vitro formation of the most voluminous staphylococcal biofilms exploitable for candidate drug antimicrobial activity testing. Methods: Spectrophotometric measurement of the crystal violet colour extracted from wells with fixed and stained Staphylococci to evaluate the ability to...
|
Page generated in 0.0789 seconds