Spelling suggestions: "subject:"biofluidics"" "subject:"micofluidics""
1 |
Characterization of Common Cartoid Artery Geometry and its Impact on Velocity Profile ShapeManbachi, Amir 12 January 2011 (has links)
Clinical and engineering studies of carotid artery disease typically assume that the
common carotid artery (CCA), proximal to the bifurcation, is relatively straight enough to
assume fully-developed flow. However, a recent study from our group (Ford et al)
showed the surprising presence, in vivo, of strongly skewed velocity profiles in mildly
curved CCAs. In this thesis we aim to understand how CCA geometry affects velocity
profile skewing.
The left and right normal CCAs of 32 participants (62±13 yrs), randomly chosen
from NIH’s VALIDATE study (N~450) were digitally segmented from aortic root to
bifurcation. It was shown that each segmented CCA could be divided into nominal
cervical and thoracic region and that each region could be approximated by planar
circular arches. Subsequent CFD simulations of CCA parametric models suggested
strong velocity profile skewing both at the inlet and outlet of cervical segment and the
effect of various geometric parameters were investigated.
|
2 |
Characterization of Common Cartoid Artery Geometry and its Impact on Velocity Profile ShapeManbachi, Amir 12 January 2011 (has links)
Clinical and engineering studies of carotid artery disease typically assume that the
common carotid artery (CCA), proximal to the bifurcation, is relatively straight enough to
assume fully-developed flow. However, a recent study from our group (Ford et al)
showed the surprising presence, in vivo, of strongly skewed velocity profiles in mildly
curved CCAs. In this thesis we aim to understand how CCA geometry affects velocity
profile skewing.
The left and right normal CCAs of 32 participants (62±13 yrs), randomly chosen
from NIH’s VALIDATE study (N~450) were digitally segmented from aortic root to
bifurcation. It was shown that each segmented CCA could be divided into nominal
cervical and thoracic region and that each region could be approximated by planar
circular arches. Subsequent CFD simulations of CCA parametric models suggested
strong velocity profile skewing both at the inlet and outlet of cervical segment and the
effect of various geometric parameters were investigated.
|
3 |
On mass transport in Physarum polycephalumBäuerle, Felix Kaspar 07 June 2019 (has links)
No description available.
|
Page generated in 0.0355 seconds