• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Spatial Resolution Measurements Using Hydrogeophysical Methods Reveal the Presence of Hotspots forBbiogenic Gas Accumulation and Release in the Florida Everglades

Unknown Date (has links)
It is well known that biogenic gas emissions (mainly methane and carbon dioxide) vary both spatially and temporally in peatlands. While most studies have focused on northern systems, several recent studies in tropical and subtropical peatlands (like the Everglades) have revealed the presence of areas of increased gas accumulation and emissions, or hotspots, that may be related to physical and/or biogeochemical changes within the peat's matrix. However, these studies are often limited in terms of sampling volume and resolution or are based in laboratory studies that may not be totally representative of field conditions. In this study we investigate the spatial variability (both lateral and vertical) in gas accumulation and release at the field scale, over 10 m long transects at two locations in Water Conservation Area 1 of the Florida Everglades, using an array of hydrogeophysical methods. Resulting data infers the presence of hotspots with dimensions ranging from 1-2 m in width and approximately 0.5 m tall. These areas showed high variations in biogenic gas accumulation and release an order of magnitude higher than surrounding areas and occur seasonally as the highest gas releases were observed during Florida’s wet season. This study therefore has implications for better understanding the spatial and temporal variability of biogenic gas hotspots in peat soils, and how the matrix structure affects gas accumulation and release. This study shows the importance of considering the heterogenous nature of the peat's matrix when quantifying gas fluxes in the Everglades, and particularly when using methods with small sampling volumes like gas chambers. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
2

Investigating biogenic gas dynamics from peat soils of the Everglades using hydrogeophysical methods

Unknown Date (has links)
Peat soils are known to be a significant emitter of atmospheric greenhouse gasses. However, the spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Florida Everglades, as the majority of studies on gas dynamics in peatlands focus on northern peatlands. The purpose of the work outlined here is focused on understanding the spatial and temporal variability in biogenic gas dynamics (i.e. production and release of methane and carbon dioxide) by implementing various experiments in the Florida Everglades at different scales of measurement, using noninvasive hydrogeophysical methods. Non-invasive methods include ground-penetrating radar (GPR), gas traps, time-lapse cameras, and hydrostatic pressure head measurements, that were constrained with direct measurements on soil cores like porosity, and gas composition using gas chromatography. By utilizing the measurements of in-situ gas volumes, we are able to estimate gas production using a mass balance approach, explore spatial and temporal variabilities of gas dynamics, and better constrain gas ebullition models. A better understanding of the spatial and temporal variability in gas production and release in peat soils from the Everglades has implications regarding the role of subtropical wetlands in the global carbon cycle, and can help providing better production and flux estimates to help global climate researchers improve their predictions and models for climate change. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
3

Use of Biogenic Gas Production as a Pre-Treatment to Improve the Efficiency of Dynamic Compaction in Saturated Silty Sand.

January 2018 (has links)
abstract: One of the most economical and viable methods of soil improvement is dynamic compaction. It is a simple process that uses the potential energy of a weight (8 tonne to 36 tonne) dropped from a height of about 1 m to 30 m, depending on the project requirement, on to the soil to be compacted hence densifying it. However, dynamic compaction can only be applied on soil deposits where the degree of saturation is low and the permeability of the soil mass is high to allow for good drainage. Using dynamic compaction on saturated soil is unsuitable because upon application of the energy, a part of the energy is transferred to the pore water. The technique also does not work very well on soils having a large content of fines because of the absence of good drainage. The current research aims to develop a new technology using biogenic gas production to desaturate saturated soils and extend the use of dynamic compaction as a ground improvement technique to saturated soils with higher fines content. To evaluate the feasibility of this technology an experimental program has been performed. Soil columns with varying soil types have been saturated with substrate solution, resulting in the formation of nitrogen gas and the change in soils volume and saturation have been recorded. Cyclic triaxial tests have been performed to evaluate the change in volume and saturation under elevated pressure conditions and evaluate the response of the desaturated soil specimens to dynamic loading. The experimental results showed that soil specimens treated with MIDP under low confinement conditions undergo substantial volume expansion. The amount of expansion is seen to be a factor of their pore size, which is directly related to their grain size. The smaller the grain size, smaller is the pore size and hence greater the volume expansion. Under higher confining pressure conditions, the expansion during gas formation is suppressed. However, no conclusive result about the effect of the desaturation of the soil using biogenic gas on its compactibility could be obtained from the cyclic triaxial tests. / Dissertation/Thesis / Data sheets / Masters Thesis Civil, Environmental and Sustainable Engineering 2018
4

Influência da temperatura na geração biogênica de metano e dióxido de carbono na formação Irati, permiano da bacia do Paraná / not available

Almeida, Nazaré da Silva 19 April 2018 (has links)
Metano (CH4) e dióxido de carbono (CO2) são gases de grande importância climática e energética, pois contribuem para o efeito de estufa, mas também para produção de energia, no caso do CH4. Do ponto de vista energético, reconhecer as diferentes fontes de geração de CH4 torna-se um fator crucial na avaliação das reservas mundiais de gás natural, uma vez que as estimativas atuais de reservas potenciais não levam em consideração as diferentes origens dos hidrocarbonetos presentes ou, na grande maioria, considera apenas a origem termogênica. A temperatura é um dos fatores mais importantes que afetam o crescimento microbiano e as reações biogeoquímicas ligadas à metanogênese. A Formação Irati (Permiano da Bacia do Paraná) ocorre na região sul da América do Sul e representa um dos folhelhos orgânicos mais importantes do mundo já que o conteúdo em carbono orgânico total (COT) atinge até 23% e cobre uma área de aproximadamente 700.000 km2. A história térmica deste importante reservatório de carbono é atípica por hospedar rochas ígneas do Cretáceo. Isto proporcionou a ocorrência de zonas termicamente imaturas até zonas com maturidade suficiente para a geração termogênica de CH4. Este estudo trata da influência da temperatura na geração de CH4 e CO2 biogênicos em folhelhos da Formação Irati. Para isto, amostras de folhelho foram utilizadas em experimentos de incubação realizados sob diferentes temperaturas (22°C, 50°C, 70°C e 80°C), com objetivo de avaliar a influência das condições térmicas sobre a geração biogênica de CH4 e CO2. Temperaturas mais elevadas promoveram maiores taxas de produção de CH4 e CO2. A produção biogênica de CH4 mostrou-se mais eficiente em condições de temperatura de 80°C, com um rendimento máximo de 2,45 ml/t.d em comparação com 0,49 ml/t.d a 22°C, 1,75 ml/t.d e 2,09 ml/t.d a 50°C e 70°C, respectivamente. A mesma tendência foi observada para o CO2. O potencial de produção máximo de CO2 foi observado sob condições térmicas de 80°C, atingindo 23467,37 ml/t.d. As diferenças de produção obtidas para as diferentes amostras analisadas parecem estar relacionadas com a composição química da matriz mineral, observando-se maior produção em amostras com maior quantidade de enxofre (S), quando submetidas a altas temperaturas (50°C, 70°C e 80°C). Além dos folhelhos da Formação Irati, níveis orgânicos das formações Água de Madeiros e Vale das Fontes, Jurássico da Bacia Lusitânica, foram também estudados, os quais são termicamente imaturos e apresentam querogênio tipicamente marinho, distinto do observado na Formação Irati. O aumento da geração biogênica de CH4 e CO2 com a elevação da temperatura também foi observado para amostras das formações Água de Madeiros e Vale das Fontes. Com o presente estudo, é quebrado o paradigma de que 80°C seria a temperatura máxima para a ocorrência de metanogênese em bacias sedimentares, ou reservatórios. Assim, a geração biogênica de CH4 é favorecida por temperaturas mais elevadas (até no mínimo 80°C), considerando-se que a microbiota dos experimentos decorridos durante o presente trabalho seria similar aquelas que ocorrem em bacias sedimentares, bem como o ecossistema. Este trabalho constitui o primeiro estudo que avaliou o efeito da temperatura na produção de gases de origem biogênica em folhelhos da Formação Irati (Bacia do Paraná) e das formações Água de Madeiros e Vale das Fontes (Bacia Lusitânica - Portugal). / Methane (CH4) and carbon dioxide (CO2) have great environmental and economic importance due to their contribution to the greenhouse effect and climate change, but also as energy resource, in the case of CH4. From the energy point of view, recognizing the different sources of CH4 in sedimentary basins has a crucial factor in assessing the world\'s natural gas reserves, since the current estimates of hydrocarbons accumulations in sedimentary basins are based on thermogenic generation of hydrocarbons. However, few studies evaluate the importance of CH4 and CO2 generation as a product of organic matter biodegradation in sedimentary basins. This issue has great relevance to improve the estimates about the geological accumulations of CH4 and CO2. Temperature is one of the most important factors affecting microbial growth and biogeochemical processes responsible for CH4 and CO2 generation in subsurface environments. In this context, the Irati Formation (Permian of the Paraná Basin) in southern of South America represents one of the most organicrich shale around the world, reaching up to 23% of total organic carbon (TOC) and covering an area of approximately 700.000 km2. The thermal history of this important geological carbon pool is atypical because of the emplacement of igneous bodies during the Early Cretaceous. In this study, shale samples of the Irati Formation were used in incubation experiments performed under different temperatures (22°C, 50°C, 70°C and 80°C) to evaluate the influence of thermal conditions on biogenic generation of CH4 and CO2. Higher temperatures promoted higher production rates of CH4 and CO2. Biogenic CH4 production was more efficient when shale samples were incubated at 80°C, with a maximum yield of 2.45 ml/t.d compared to 0.49 ml/t.d at 22°C, 1.75 ml/t.d at 50°C and 2.09 ml/t.d at 70°C. The same trend was observed for CO2 generated as by-product of methanogenesis. The maximum production for CO2 was observed at 80°C, reaching 23467.37 ml/t.d. The differences in CH4 and CO2 production observed for different analyzed samples seem to be related to the composition of the mineral matrix, being observed higher production in samples with higher amount of sulfur. Additionaly, organic layers of the Água de Madeiros and Vale das Fontes Formations (Lusitanian Basin), which are thermally immature and present typically marine kerogen, were also submitted to incubation experiments to evaluate CH4 and CO2 generation. Higher biogenic generation of CH4 with the elevation of temperature was also observed for the Água de Madeiros and Vale das Fontes Formations. This suggests that biogenic CH4 generation is favored by higher temperatures, at least until 80°C, independent of the thermal maturity of the substrate, pointing that the temperature window (and depth zone) for the generation of biogenic CH4 in sedimentary basins is larger than suggested in previous studies.
5

Microbial Activity in Sediments: Effects on Soil Behavior

Rebata-Landa, Veronica 23 August 2007 (has links)
Microorganisms have played a critical role in geological processes and in the formation of soils throughout geological time. It is hypothesized that biological activity can also affect soil properties in short engineering time-scales. Bioactivity in sediments is determined by the classical limiting factors (i.e., nutrients, water, C for biomass, temperature and pH) as well as by pore-size geometrical limits and mechanical interactions between bacterial cells and soil particles. These constraints restrict the range of grain size and burial depth where biomediated geochemical processes can be expected in sediments, affect the interpretation of geological processes and the development of engineering solutions such as bioremediation. When biological, geometrical and mechanical limiting factors are satisfied, bioactivity can be designed to alter the mechanical properties of a soil mass, including lowering the bulk stiffness of the pore fluid through controlled gas bio-generation, increasing the shear stiffness of the soil skeleton by biomineralization, and reducing hydraulic conduction through biofilm formation and clogging. Each of these processes can be analyzed to capture the bio-chemo-hydro-mechanical coupling effects, in order to identify the governing equations that can be used for process design. Design must recognize the implications of spatial variability, reversibility and environmental impacts.
6

Sedimentology, ichnology, and resource characteristics of the low-permeability Alderson Member, Hatton Gas Pool, southwest Saskatchewan, Canada

Lemiski, Ryan Thomas Unknown Date
No description available.
7

Sedimentology, ichnology, and resource characteristics of the low-permeability Alderson Member, Hatton Gas Pool, southwest Saskatchewan, Canada

Lemiski, Ryan Thomas 06 1900 (has links)
The Upper Cretaceous Alderson Member is a prolific gas (biogenic) producer in western Canada. In the Hatton Gas Pool area (southwest Saskatchewan), Alderson Member strata from ten drill-cores have been examined and classified based on sedimentological and ichnological character. Core analysis has determined that Alderson Member deposits comprise thick intervals of pervasively bioturbated strata. Using spot-minipermeametry and high-pressure mercury injection porosimetry methods, the influence of pervasively bioturbated intervals on the overall resource potential of Alderson Member strata is evaluated. Results from permeability and porosity testing demonstrate that pervasively bioturbated rock fabrics appear to locally enhance the overall storage and vertical transmission of gas from Alderson Member reservoirs.

Page generated in 0.1264 seconds