• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Differential Response of Barrier Island Dune Grasses to Species Interactions and Burial

Harris, April 01 January 2016 (has links)
Dune grasses are integral to biogeomorphic feedbacks that create and alter foredunes and barrier island stability. In a glasshouse study, Ammophila breviligulata Fern. and Uniola paniculata L. were planted together and subjected to sand burial to quantify morphological and physiological response. Ammophila breviligulata physiological and morphological performance declined when planted with U. paniculata but U. paniculata was not affected when planted with A. breviligulata. Burial had a positive effect on A. breviligulata and U. paniculata as indicated by electron transport rate and total biomass at the end of the experiment. Due to their different growth strategies, A. breviligulata and U. paniculata form continuous versus hummocky dunes, respectively. As global temperatures rise and U. paniculata migrates into A. breviligulata dominated habitat, A. breviligulata performance may diminish, and changes in dune form could result in altered island stability via increased overwash. Foredune community structure could also change due to the shift in dominant species which could alter dune succession.

Page generated in 0.057 seconds