Spelling suggestions: "subject:"bioleach"" "subject:"bioleached""
1 |
Enhancement of Bioleaching Using AHL Mediated Quorum SensingDewar, Alexander 18 May 2022 (has links)
Biomining is a maturing technology that uses the activity of sulfur and iron oxidising microorganisms to liberate valuable metals from ores but suffers from slow reaction kinetics. Increasing the reaction kinetics of a biomining process could produce significant bottom line improvements for mining companies worldwide and encourage the use of biomining as a green mining technology. Quorum sensing molecules have been shown to successfully modulate the behaviours of biomining bacteria in manners that may be able to improve bioreactor retention times. This study tests the potential for two different quorum sensing treatments to improve the nickel leaching ability of a biomining bacterial consortium. A novel method of delivering quorum sensing treatments to bacterial cultures is described while doubt is cast on established methods. Laboratory scale bioreactors were constructed and the leaching of nickel into solution was followed via ICP-AES to quantify improvements in bioleaching ability. Similar bioreactors were used to exhibit the inhibitory effect that a commonly used organic solvent can have on the leaching ability of bioleaching consortia. Ultimately a qualitative improvement in the bioleaching of nickel is produced using a mixture of tetradecanoyl-acylhomoserine lactone (C14-AHL) and its two derivatives, but the use of C14-AHL alone did not improve bioleaching kinetics. Use of small volumes of the solvent DMSO produced large inhibitory effects on the leaching of nickel by bioleaching consortia.
|
2 |
Bacterial Leaching of Chalcopyrite OreCanfell, Anthony John Unknown Date (has links)
Bacterial leaching utilises bacteria, ubiquitous to sulphide mining environments to oxidise sulphide ores. The sulphide mineral chalcopyrite is the most common copper mineral in the world, comprising the bulk of the known copper reserves. Chalcopyrite is resistant to bacterial leaching and despite research over the last 20-30 years, has not yet been economically bioleached. Attempts have been made to use silver to catalyse the bacterial leaching of chalcopyrite since the early seventies. The majority of reported testwork had been performed on finely ground ore and concentrates in agitated batch reactors. This project used silver to catalyse the bioleaching of chalcopyrite in shake flasks, small columns and large columns. The catalytic effect was extensively studied and experimental parameters were varied to maximise copper recovery. Silver was also used to catalyse the ferric leaching of chalcopyrite at elevated temperatures. It was noted that the leaching performance of chalcopyrite in shake flasks compared to columns was markedly different. The specific differences between shake flasks and columns were qualified and separately tested to determine which parameter(s) affected the bioleaching of chalcopyrite. It was found that the ore to solution ratio, aeration, addition of carbon dioxide, solution distribution and small variations in the leaching temperature did not significantly effect the bioleaching of chalcopyrite ore in columns. The method of silver addition to columns did significantly affect the overall copper extraction. The ore in shake flasks was subjected to abrasion between ore particles and with the base of the flask. A test was designed to mimic the shake flask conditions, without the abrasion. The low abrasion test performed similarly to a column, operated with optimum silver addition. This indicated that the inherent equipment difference between shake flask and column operation largely accounted for the difference in leaching performance. Chalcopyrite ore was biologically leached in large columns. The ore crush size and other conditions were typical of those used in the field. The biological leach achieved 65% copper extraction in 160 days. This level of copper extraction is significantly higher than any previously reported results (typically /10% copper extraction) and represents a significant advance in the bacterial leaching of chalcopyrite ore. Due to the inherent high temperature within underground stopes, it was decided to investigate the possibility of separating the leaching and the bacterial oxidation stages. The concept of separate bacterial and ferric leaching has been previously suggested, however the application to a stope, and heat exchange between the process streams was a novel approach. Large column ferric leaches at 70 oC illustrated the technical feasibility of this process. Copper extraction was rapid and high (70% in 100 days of leaching), even when a reduced level of silver catalysis was used. After leaching in large columns, samples of ore were taken for analysis by optical mineralogy. The analysis gave valuable insights into the nature of reaction passivation on chalcopyrite ore. In particular, it was discovered that the precipitation of goethite was a major limiting factor in the bioleaching and ferric leaching of chalcopyrite in columns. In addition, reduced sulphide species were detected on the surface of residual chalcopyrite, giving an indication of the sequential nature of the chalcopyrite reaction chemistry. The bacterial population was characterised using DNA techniques developed during the project. Qualitative speciation was carried out and compared between the columns, down the columns and over time in a column. Comparison of these populations enabled greater mechanistic understanding of the role of bacteria in the leaching of chalcopyrite. This work was the most comprehensive attempt to date made to delineate the complex microbiological/mineral actions using analysis of population dynamics from a mixed inoculum. It was found that the iron oxidiser Thiobacillus ferrooxidans dominated within the columns and leach solutions. The sulphur oxidiser Sulfobacillus thermosulfidooxidans was also prevalent in the columns, particularly during the period of rapid chalcopyrite oxidation. The high temperature, ferric leaching of chalcopyrite was unexpectedly poor in the first round of large columns. The reason for the low extraction was attributed to an increase in pH down the column, resulting in excessive goethite precipitation. The solution flowrate (velocity) was increased by ten times in subsequent columns. There were no operational problems (e.g. break-up of ore agglomerates). The increase in flowrate resulted in a high yield of copper. The kinetics of extraction were faster than a corresponding bacterial leach, confirming the potential advantage of a high temperature leach. The small column studies highlighted that it was important to get an even distribution of silver down the stope to enable maximum catalytic effect. If the ore were agglomerated, silver would be added with acid at that point. However, it may not always be possible to agglomerate the ore. For example, the process may be used in-situ on a fractured ore body, or on an ore that has a low fines content, and hence does not require agglomeration. Various complexing agents were tested for their ability to distribute silver at the start of the leach and to recover silver at the end of the leach. For instance when silver was complexed with thiourea and then trickled through the ore, an even distribution of silver was achieved. After leaching was completed, a thiourea wash recovered a significant amount of the silver. These two techniques minimised the amount of silver required and thus significantly added to the economic viability of the process. The success of the technical work has led to an evaluation of the process in the field. A flowsheet was developed for the high temperature, in-stope ferric leach of chalcopyrite. An economic analysis was performed that illustrated the process would be viable in certain situations. An engineering study considered issues such as acid consumption, aeration, silver distribution, silver recovery and a heat balance of the stope.
|
Page generated in 0.0329 seconds