• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Real Time Biological Threat Agent Detection with a Surface Plasmon Resonance Equipped Unmanned Aerial Vehicle

Palframan, Mark C. 17 June 2013 (has links)
A system was developed to perform real-time biological threat agent (BTA) detection with a small autonomous unmanned aerial vehicle (UAV). Biological sensors just recently reached a level of miniaturization and sensitivity that made UAV integration a feasible task. A Surface Plasmon Resonance (SPR) biosensor was integrated for the first time into a small UAV platform, allowing the UAV platform to collect and then quantify the concentration of an aerosolized biological agent in real-time. A sensor operator ran the SPR unit through a groundstation laptop and was able to wirelessly view detection results in real time. An aerial sampling mechanism was also developed for use with the SPR sensor. The collection system utilized a custom impinger setup to collect and concentrate aerosolized particles. The particles were then relocated and pressurized for use with the SPR sensor. The sampling system was tested by flying the UAV through a ground based plume of water soluble dye. During a second flight test utilizing the onboard SPR sensor, a sucrose solution was autonomously aerosolized, collected, and then detected by the combined sampling and SPR sensor subsystems, validating the system\'s functionality. The real-time BTA detection system has paved the way for future work quantifying biological agents in the atmosphere and performing source localization procedures. / Master of Science

Page generated in 0.0607 seconds