• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dinoflagellate genomic organization and phylogenetic marker discovery utilizing deep sequencing data

Mendez, Gregory Scott 01 October 2016 (has links)
<p> Dinoflagellates possess large genomes in which most genes are present in many copies. This has made studies of their genomic organization and phylogenetics challenging. Recent advances in sequencing technology have made deep sequencing of dinoflagellate transcriptomes feasible. This dissertation investigates the genomic organization of dinoflagellates to better understand the challenges of assembling dinoflagellate transcriptomic and genomic data from short read sequencing methods, and develops new techniques that utilize deep sequencing data to identify orthologous genes across a diverse set of taxa. To better understand the genomic organization of dinoflagellates, a genomic cosmid clone of the tandemly repeated gene Alchohol Dehydrogenase (AHD) was sequenced and analyzed. The organization of this clone was found to be counter to prevailing hypotheses of genomic organization in dinoflagellates. Further, a new non-canonical splicing motif was described that could greatly improve the automated modeling and annotation of genomic data. A custom phylogenetic marker discovery pipeline, incorporating methods that leverage the statistical power of large data sets was written. A case study on Stramenopiles was undertaken to test the utility in resolving relationships between known groups as well as the phylogenetic affinity of seven unknown taxa. The pipeline generated a set of 373 genes useful as phylogenetic markers that successfully resolved relationships among the major groups of Stramenopiles, and placed all unknown taxa on the tree with strong bootstrap support. This pipeline was then used to discover 668 genes useful as phylogenetic markers in dinoflagellates. Phylogenetic analysis of 58 dinoflagellates, using this set of markers, produced a phylogeny with good support of all branches. The <i>Suessiales</i> were found to be sister to the <i>Peridinales.</i> The <i>Prorocentrales </i> formed a monophyletic group with the Dinophysiales that was sister to the <i>Gonyaulacales.</i> The <i>Gymnodinales</i> was found to be paraphyletic, forming three monophyletic groups. While this pipeline was used to find phylogenetic markers, it will likely also be useful for finding orthologs of interest for other purposes, for the discovery of horizontally transferred genes, and for the separation of sequences in metagenomic data sets.</p>
2

Three-dimensional motifs as signatures of protein function and evolution.

Polacco, Benjamin John. January 2007 (has links)
Thesis (Ph.D.)--University of California, San Francisco, 2007. / Source: Dissertation Abstracts International, Volume: 68-07, Section: B, page: 4209. Adviser: Patricia C. Babbitt.
3

Systematic identification of regulatory pathways in human and mouse embryonic stem cells and other mammalian systems.

Chaivorapol, Christina. January 2008 (has links)
Thesis (Ph.D.)--University of California, San Francisco, 2008. / Source: Dissertation Abstracts International, Volume: 69-08, Section: B, page: 4507. Adviser: Hao Li.
4

Evolutionary constraints on the structural similarity of proteins and applications to comparative protein structure modeling.

Peterson, Mark Erik. January 2008 (has links)
Thesis (Ph.D.)--University of California, San Francisco, 2008. / Source: Dissertation Abstracts International, Volume: 69-12, Section: B, page: 7231. Advisers: Andrej Sali; Patricia C. Babbitt.
5

Genome-wide analysis of splicing requirements and function through mRNA profiling

Heimiller, Joseph Karl 11 February 2014 (has links)
<p> The RNA-binding proteins U2AF and PTB play important roles in gene expression in many eukaryotic species. Although U2AF and PTB have been well-studied, their functional requirements have not been investigated on a genome-wide scale. In this thesis, I analyze RNA expression data to determine the requirement of the general splicing factor U2AF in <i>S. pombe</i> and to identify genes misregulated in Drosophila PTB mutants. I find that many introns are insensitive to U2AF inactivation in a <i>Schizosaccharomyces pombe</i> U2AF59 mutant, <i>prp2.1.</i> Bioinformatics analysis indicates that U2AF-insensitive introns have stronger 5' splice sites and higher A/U composition. The importance of intronic nucleotide composition was further investigated using wild type RNA expression data sets. I show that nucleotide composition is a relatively important factor for regulated intron retention in a variety of species. I also analyzed the RNA-binding protein PTB using RNA Seq data to reveal genes misregulated in PTB mutants in <i>D. melanogaster.</i> I identify misregulation of alternative splicing in PTB mutants and putative PTB binding sites. In the PTB embryonic lethal mutant, which shows dorsoventral patterning defects, I show that dorsal fate genes are significantly up-regulated. I present a model to link PTB to dorsal closure defects. This thesis provides the first genome-wide analysis of U2AF in <i>S. pombe</i> and PTB in <i>Drosophila melanogaster. </i></p>
6

Towards an understanding of the gene regulatory network of the intraerythrocytic developmental cycle of Plasmodium falciparum.

Irie, Takeshi. January 2007 (has links)
Thesis (Ph.D.)--University of California, San Francisco, 2007. / Source: Dissertation Abstracts International, Volume: 68-11, Section: B, page: 7115. Adviser: Joseph DeRisi.

Page generated in 0.8327 seconds