Spelling suggestions: "subject:"biomarker responses"" "subject:"miomarker responses""
1 |
Metal bioaccumulation and biomarker responses in tigerfish, Hydrocynus vittatus, from three South African populationsFisher, Eve Mariel 07 June 2012 (has links)
M.Sc. / Pollutants present in minute concentrations in aquatic environments and which possess long residence times may be accumulated by aquatic organism such as fish, resulting in adverse affects. Bioaccumulation and biomarker responses are often used to qualify and quantify pollutant exposure and effect, and for this reason form a major part of many environmental assessments. To interpret bioaccumulation and biomarker responses the physico-chemical parameters of the environment should be known. This study aimed to spatially and temporally assess the environmental partitioning of heavy metals in three South African freshwater systems, namely the Pongolapoort Dam, Olifants and Luvuvhu Rivers, and to relate these concentrations to bioaccumulation and biomarker responses in tigerfish, Hydrocynus vittatus. This is because there is relatively little known about the bioaccumulation potential and stress responses of tigerfish to pollutants and they have recently become listed as a protected species. Result from this study showed that there were few differences between seasons in terms of metal bioaccumulation in the Pongolapoort Dam with the exception of Se, Zn and Fe. Selenium and Fe concentrations were linked to concentrations found in the environment, whereas Zn was attributed to a disruption in homeostasis within the fish. Increases in MT were found during the winter months and were attributed to increased metal concentrations at this time, namely Zn and Se, whereas decreases in CEA and PC were observed at this time and were linked to depleted energy reserves, stress and a reduction in the presence of pesticides as a result of decreased runoff during the winter months. It was found in the Olifants and Luvuvhu Rivers that there were no distinct decreases in metal concentrations as the rivers flowed through the KNP, and processes such as rainfall, remobilization of sediments, distance of the study area from the source and geology played a great role in the distribution of metals. Metal concentrations in the Olifants River water, sediment and fish were, for the most part, found to be lower than previous studies, possibly due to improvement in management strategies or increased buffering of this river. Only Al and As were significantly higher in tigerfish from the Olifants River, and this was reflected in high MT concentrations. It was suggested that tigerfish from the Olifants River have developed effective mechanisms for the excretion and detoxification of heavy metals that they are exposed to as a result of extended exposure. Concentrations of AChE were also significantly inhibited in tigerfish from the Olifants River which is indicative of greater concentrations of organophosphates and carbamate pesticides than the other sites. Tigerfish from the Pongolapoort Dam had signifcantly higher levels of MT and significantly inhibited concentrations of AChE in comparison to tigerfish from the Luvuvhu River. The tigerfish from the Luvuvhu River had significantly higher concentrations of Se in muscle tissue. Tigerfish from the Luvuvhu River, also experienced stress as a result of pollution as was apparent from significantly depleted energy reserves in comparison to the other sites under study, and higher concentrations of PC and CYP1A which are typical biomarkers responding to halogenated and aromatic pesticides, such as deltamethrin and endosulfan. It was recommended that further studies be done to assess the presence of pesticides within these systems to determine the contribution of these pollutants to the state of tigerfish
|
2 |
The relationship between organochlorine pesticide exposure and biomarker responses of amphibians in the lower Phongolo River floodplain / Nicolaas Johannes WolmaransWolmarans, Nicolaas Johannes January 2015 (has links)
Amphibians are regarded as sensitive indicators of environmental change and are therefore
excellent subjects for use in ecotoxicology. The Phongolo River floodplain is South Africa’s
most diverse natural floodplain system and hosts more than 40 frog species. It is also a
malaria endemic region and is subjected to active spraying with
Dichlorodiphenyltrichloroethane (DDT) through means of indoor residual spraying over the
summer months. The upper Phongolo River runs through agricultural landscape and is
subjected to runoff from forest plantations, orchards and sugar cane plantations. In this study
residue levels of 22 different organochlorine pesticides (OCPs) were analysed in selected
amphibian species from in and around the Ndumo Nature Reserve coupled with 12 different
biomarker response assays to determine environmental exposure levels and possible sublethal
effects in amphibians from the lower Phongolo River floodplain. Seasonal change,
direct influence of anthropogenic activity and the influence of species’ aquatic preference in
habitat selection were all factors considered during this assessment. Stable Isotope
analyses were performed on 11 different food web components In order to determine the
food web structure pertaining to Xenopus muelleri (Müller's platanna). Samples were
collected during both high and low flow seasons from inside and outside Ndumo Nature
Reserve. Organochlorine pesticide bioaccumulation was analysed in whole frog samples
using a GC-μECD. Results indicated significant seasonal variation in OCP levels and
exposure composition. Significant differences between inside and outside sites were also
noted. Dichlorodiphenyltrichloroethane in its different isomer forms and their metabolites
along with the hexachlorocyclohexane (HCH) isomers was the two main contributing OCP
groups detected. Total OCP levels from all sample sets ranged between 8.71 ng/g lipid and
21,399.03 ng/g lipid. An increase in OCP accumulation was observed for X. muelleri over a
period of one year. Organochlorine pesticides are known to have neurotoxic effects causing
imbalances in Na+, K+, and Ca+ ion exchange. Hyperactivity has been reported in Rana
temporaria (European Common frog) tadpoles exposed to p,p-DDT concentrations above
110,000 ng/g lipid. Despite OCP levels measured in frogs from this study being lower than
reported toxic levels, the biomarker response assays indicated definite oxidative stress
responses correlating to OCP bioaccumulation, with other minor responses shown. Cellular
energy allocation showed a shift in the main energy source type from proteins to lipids
correlating to increased OCP bioaccumulation. A slight inhibition response was noted in the
hepato-somatic index correlating to γ-HCH bioaccumulation. Stable isotope analyses
indicated food web structure differences between inside and outside the reserve, with
outside showing less clear distinction between trophic groups and nitrogen enrichment of
primary producers. / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2015
|
3 |
The relationship between organochlorine pesticide exposure and biomarker responses of amphibians in the lower Phongolo River floodplain / Nicolaas Johannes WolmaransWolmarans, Nicolaas Johannes January 2015 (has links)
Amphibians are regarded as sensitive indicators of environmental change and are therefore
excellent subjects for use in ecotoxicology. The Phongolo River floodplain is South Africa’s
most diverse natural floodplain system and hosts more than 40 frog species. It is also a
malaria endemic region and is subjected to active spraying with
Dichlorodiphenyltrichloroethane (DDT) through means of indoor residual spraying over the
summer months. The upper Phongolo River runs through agricultural landscape and is
subjected to runoff from forest plantations, orchards and sugar cane plantations. In this study
residue levels of 22 different organochlorine pesticides (OCPs) were analysed in selected
amphibian species from in and around the Ndumo Nature Reserve coupled with 12 different
biomarker response assays to determine environmental exposure levels and possible sublethal
effects in amphibians from the lower Phongolo River floodplain. Seasonal change,
direct influence of anthropogenic activity and the influence of species’ aquatic preference in
habitat selection were all factors considered during this assessment. Stable Isotope
analyses were performed on 11 different food web components In order to determine the
food web structure pertaining to Xenopus muelleri (Müller's platanna). Samples were
collected during both high and low flow seasons from inside and outside Ndumo Nature
Reserve. Organochlorine pesticide bioaccumulation was analysed in whole frog samples
using a GC-μECD. Results indicated significant seasonal variation in OCP levels and
exposure composition. Significant differences between inside and outside sites were also
noted. Dichlorodiphenyltrichloroethane in its different isomer forms and their metabolites
along with the hexachlorocyclohexane (HCH) isomers was the two main contributing OCP
groups detected. Total OCP levels from all sample sets ranged between 8.71 ng/g lipid and
21,399.03 ng/g lipid. An increase in OCP accumulation was observed for X. muelleri over a
period of one year. Organochlorine pesticides are known to have neurotoxic effects causing
imbalances in Na+, K+, and Ca+ ion exchange. Hyperactivity has been reported in Rana
temporaria (European Common frog) tadpoles exposed to p,p-DDT concentrations above
110,000 ng/g lipid. Despite OCP levels measured in frogs from this study being lower than
reported toxic levels, the biomarker response assays indicated definite oxidative stress
responses correlating to OCP bioaccumulation, with other minor responses shown. Cellular
energy allocation showed a shift in the main energy source type from proteins to lipids
correlating to increased OCP bioaccumulation. A slight inhibition response was noted in the
hepato-somatic index correlating to γ-HCH bioaccumulation. Stable isotope analyses
indicated food web structure differences between inside and outside the reserve, with
outside showing less clear distinction between trophic groups and nitrogen enrichment of
primary producers. / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2015
|
Page generated in 0.0813 seconds