• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation into physiological parameters underlying yield variation between different varieties of cocoa (Theobroma cacao L.)

Daymond, Andrew James January 2000 (has links)
No description available.
2

Manipulating Sucrose Proton Symporters to Understand Phloem Loading

Dasgupta, Kasturi 08 1900 (has links)
Phloem vascular tissues transport sugars synthesized by photosynthesis in mature leaves by a process called phloem loading in source tissues and unloading in sink tissues. Phloem loading in source leaves is catalyzed by Suc/H+ symporters (SUTs) which are energized by proton motive force. In Arabidopsis the principal and perhaps exclusive SUT catalyzing phloem loading is AtSUC2. In mutant plants harboring a T-DNA insertion in each of the functional SUT-family members, only Atsuc2 mutants demonstrate overtly debilitated phloem transport. Analysis of a mutant allele (Atsuc2-4) of AtSUC2 with a T-DNA insertion in the second intron showed severely stunted phenotype similar to previously analyzed Atsuc2 null alleles. However unlike previous alleles Atsuc2-4 produced viable seeds. Analysis of phloem specific promoters showed that promoter expression was regulated by Suc concentration. Unlike AtSUC2p, heterologous promoter CoYMVp was not repressed under high Suc conc. Further analysis was conducted using CoYMVp to test the capacity of diverse clades in SUT-gene family for transferring Suc in planta in Atsuc2 - / - mutant background. AtSUC1 and ZmSUT1 from maize complemented Atsuc2 mutant plants to the highest level compared to all other transporters. Over-expression of the above SUTs in phloem showed enhanced Suc loading and transport, but against expectations, plants were stunted. The implications of SUT over-expression to enhance phloem transport and loading are discussed and how it induces a perception of phosphate imbalance is presented.
3

An Allometric Approach to Evaluate Physiological and Production Efficiencies in Tree Size for Tart Cherry and Apple Orchard Systems

Brym, Zachary T. 01 May 2016 (has links)
Improving production efficiency is a major challenge for modern orchard systems. The primary response in horticulture is to develop high-density orchard systems that use dwarfing rootstocks and intense management strategies to maintain small tree size. As development and evaluation of novel orchard systems may help improve understanding of plant physiology for the development of high-density systems. The effect of tree size and architecture on physiological and production efficiency was evaluated for tart cherry (Prunus cerasus, P. mahaleb) and apple (Malus spp.) orchard systems using a physiologically driven modeling approach, called allometry. Branch dimensions, canopy dimensions and biomass were measured for 24-year-old tart cherry individuals and 10-year-old 'Golden Delicious' apple individuals on various rootstocks in experimental blocks at the Kaysville Research Farm in Davis Co., Utah. Tree size was related to annual fruit biomass that had been collected over the duration of the apple trial. Branch dimensions, canopy dimensions, yield, and fruit quality were collected in commercial tart cherry orchards of Utah Co. Tree size, architecture, and biomass of tart cherry and apple expressed strong allometric relationships that were broadly consistent among the two orchard tree species and the theoretical expectations derived from wild plants. The most consistent relationship was the trunk diameter (or trunk cross sectional area) - stem biomass relationship, which broadly followed the 8/3-power law. Branch and canopy dimensions that include a measure of length, such as branch length and canopy height, demonstrated architecture indicative of high water efficiency and metabolic activity that is relieved from biomechanical constrains of weight bearing. The apple rootstocks differed from each other in production efficiency with individuals that express smaller branch and canopy dimensions producing a higher proportion of fruit relative to tree size. In the commercial tart cherry orchards, smaller individuals with relatively higher canopy height and spread expressed higher yield and fruit quality. Overall, this research supported the continued development of training systems that maintain small trees to improve physiological and production efficiency. Further research must reconcile other consequences of intense management and overproduction that arise with the increased efficiency facilitated by small tree size and high-density orchard systems to maintain sustainable fruit production.

Page generated in 0.1613 seconds