Spelling suggestions: "subject:"biomechancis"" "subject:"simmechancis""
1 |
The Effects of Protective Footwear on Spine Control and Lifting MechanicsMavor, Matthew January 2018 (has links)
Low back pain (LBP) is a common condition that affects all age groups and sexes. Although the development of LBP is multifactorial, the performance of lifting-based manual material handling (MMH) tasks are recognized as a primary risk factor. Many occupations that involve MMH tasks are performed in hazardous environments, where personal protective equipment (PPE) must be worn. Among the most commonly prescribed forms of PPE in Canada are CSA Grade 1 steel-toed work boots. According to the hazards present on the jobsite, workers may need to wear steel-toed work boots with/without a metatarsal guard or be able to wear steel-toed shoes (no upper). However, the amount of research on the interaction between protective footwear and human motion is limited. Therefore, the purpose of this thesis was to assess the effects of steel-toed shoes (unlaced), steel-toed boots (work boot), and steel-toed boots with a metatarsal guard (MET) on lifting mechanics. Specifically, three-dimensional kinematics of the lower limbs and trunk, sagittal net reaction moments of the low back, and local dynamic stability (LDS) of the lower limbs, lower back, and upper back were analyzed. Twelve males and 12 females were recruited to participate in this research project. Participants performed a repetitive lifting task at 10% of their maximum back strength, under three block-randomized footwear conditions. Ankle dorsiflexion was negatively affected by footwear type, where dorsiflexion was reduced the most in the MET condition compared to the unlaced condition (p < 0.01). However, there were no other main effects of footwear type on any other variable tested, and both male and female participants were able to maintain similar lifting mechanics and LDS values when moving up the kinematic chain. It is possible that participants were able to preserve their kinematics and stability through the appropriate recruitment of muscles, which may have implications for an increase in compressive and shear force on the spine and should be explored further in the future.
|
2 |
Quantifying Segmental Spinal Motion during Activities of Daily LivingBreloff, Scott 03 October 2013 (has links)
Back pain is a very common musculoskeletal impairment in most Americans. Average annual occurrence of back pain is reported around 30% of the population and is the most common cause of activity limitation in people younger than 45 years old. Eighty percent of the back pain presents in the lumbar spine. Although this ailment is very prevalent in the American population, there is a lack of empirical evidence supporting the common clinical diagnosis and intervention back pain strategies. The frequency of back pain and the lack of treatment methods were the motivation for this investigation. It is important to better understand spine dynamics during ambulatory tasks of daily activities to identify possible biomechanical mechanisms underlying back pain.
Current biomechanical quantification methods for spine dynamics are either too invasive or not detailed enough to fully comprehend detailed spinal movement. Therefore, a non-invasive but detailed procedure to calculate spine dynamics was developed and tested. In this study, multi-segmented spine dynamics (kinematics and kinetics) were calculated during four activities of daily living (level walking (W), obstacle crossing (OC), stair ascent (SA) and stair descent (SD)).
Our findings suggested an in-vivo multi-segmented spine surface marker set is able to detect different and repeatable motion patterns during walking among various spinal segments. The sacrum to lower lumbar (SLL) joint had the largest range of motion (ROM) when compared to the other more superior joints (lower lumbar to upper lumbar and upper lumbar to lower thoracic). Furthermore, SA task demonstrated more flexion ROM than both W and SD tasks. In addition to task influence, joints at different spine levels also demonstrated different ROMs, where SLL had a greater ROM than upper lumbar to lower thoracic (ULLT) in the transverse plane. Age was found to not significantly affect the segmental spinal ROM or peak angles. The vertical segmental joint reaction forces were different between tasks, where SD yielded larger vertical reaction forces than W.
Overall, findings from this dissertation work were able to show that a multi-segment spine marker system could be an effective tool in determining different spinal dynamics during various activities of daily living.
This dissertation includes unpublished co-authored material.
|
Page generated in 0.0277 seconds