• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MECHANICAL FATIGUE TESTING OF HUMAN RED BLOOD CELLS USING THE ELECTRO-DEFORMATION METHOD

Unknown Date (has links)
Human red blood cells (RBCs) must undergo severe deformation to pass through narrow capillaries and submicronic splenic slits for several hundred thousand times in their normal lifespan. Studies of RBC biomechanics have been mainly focused on cell deformability measured from a single application of stress using classical biomechanical techniques, such as optical tweezers and micropipette aspiration. Mechanical fatigue effect on RBCs under cyclic loadings of stress that contributes to the membrane failure in blood circulation is not fully understood. This research developed a new experimental method for mechanical fatigue testing of RBCs using amplitude-modulated electro-deformation technique. Biomechanical parameters of individually tracked RBCs show strong correlations with the number of the loading cycles. Effects of loading configurations on the cellular fatigue behavior of RBCs is further studied. The results uniquely establish the important role of mechanical fatigue in influencing physical properties of biological cells. They further provide insights into the accumulated membrane damage during blood circulation, paving the way for further investigations of the eventual failure of RBCs in various hemolytic pathologies. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection

Page generated in 0.0793 seconds