• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 136
  • 136
  • 136
  • 67
  • 40
  • 31
  • 22
  • 17
  • 16
  • 16
  • 15
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

CLOSED-LOOP AFFERENT NERVE ELECTRICAL STIMULATION FOR REHABILITATION OF HAND FUNCTION IN SUBJECTS WITH INCOMPLETE SPINAL CORD INJURY

Schildt, Christopher J. 01 January 2016 (has links)
Peripheral nerve stimulation (PNS) is commonly used to promote use-dependent cortical plasticity for rehabilitation of motor function in spinal cord injury. Pairing transcranial magnetic stimulation (TMS) with PNS has been shown to increase motor evoked potentials most when the two stimuli are timed to arrive in the cortex simultaneously. This suggests that a mechanism of timing-dependent plasticity (TDP) may be a more effective method of promoting motor rehabilitation. The following thesis is the result of applying a brain-computer interface to apply PNS in closed-loop simultaneously to movement intention onset as measured by EEG of the sensorimotor cortex to test whether TDP can be induced in incomplete spinal cord injured individuals with upper limb motor impairment. 4 motor incomplete SCI subjects have completed 12 sessions of closed-loop PNS delivered over 4-6 weeks. Benefit was observed for every subject although not consistently across metrics. 3 out of 4 subjects exhibited increased maximum voluntary contraction force (MVCF) between first and last interventions for one or both hands. TMS-measured motor map volume increased for both hemispheres in one subject, and TMS center of gravity shifted in 3 subjects consistent with studies in which motor function improved or was restored. These observations suggest that rehabilitation using similar designs for responsive stimulation could improve motor impairment in SCI.
32

Formulation Development of a Polymer-Drug Matrix with a Controlled Release Profile for the Treatment of Glaucoma

Tsoi, Eric W. 01 December 2013 (has links)
Glaucoma is the leading cause of blindness in the United States accounting for 9-12% of all cases of blindness. Currently, the front line treatment for glaucoma are prostaglandins that may have to be taken up to several times a day. Even with proper treatment, roughly 11% of the patients using the treatment are non-compliant and lose their vision. In this project, ForSight Laboratories has developed a pharmaceutical drug delivering implant with the capability of sustaining long-term release of a prostaglandin as a new way to treat the condition. This project reports the product development of a polymer drug matrix with a controlled release in order to better treat glaucoma. Accompanying product development, a mathematical model was created in order to strengthen the understanding of the dosage profile and to predict long term dosages.
33

Multi-Frequency Processing for Lumen Enhancement with Wideband Intravascular Ultrasound

Carrillo, Rory A 01 September 2010 (has links)
The application of high frequency ultrasound is the key to higher resolution intravascular ultrasound (IVUS) images. The need to further improve the IVUS spatial resolution may drive the transducer center frequency even higher than the current 40 MHz range. However, increasing the center frequency may be challenging as it leads to stronger scattering echoes from blood. The high level of blood scattering echoes may obscure the arterial lumen and make image interpretation difficult. Blood backscatter levels increase with transmission center frequency at a much greater rate compared to arterial tissue. These different frequency dependencies provide a potential method to distinguish blood from tissues by means of multi-frequency processing techniques. To obtain a good blood-tissue contrast with sufficient signal-to-noise ratio, a system with a wider bandwidth is highly desirable. The method described in this paper is based on the ratio of the received signal power between the high (60 MHz) and low (25 MHz) frequency ranges from a novel 40 MHz wideband IVUS catheter. In this paper we will present our in vitro experiment work on porcine blood and a tissue-mimicking arterial wall. Results of multi-frequency processing indicate that blood, at higher frequencies, has a greater backscatter power that is 8X greater than arterial tissue, suggesting this technique will provide a greater contrast between the blood-wall lumen boundary for coronary imaging.
34

Microsphere Spray System for Wound Coverage

Andersen, Nicholas J 01 January 2014 (has links)
Spinal fusion is used to treat diseases or disorders of the spine by fusing together two or more vertebrae. Two associated risks with spinal fusion are infection and blood loss. Administration of tranexamic acid is used to prevent blood loss, and transfusions are given following blood loss. Surgical site infections are prevented with vancomycin powder spread into the surgical wound, while established infections are treated by debridement and delivery of antibiotics for 4 to 6 weeks. The present research explored an alternate method to prevent and treat blood loss or infection in spinal fusion. Poly(lactic-co-glycolic acid) (PLGA) microspheres was used to encapsulate vancomycin for 42 days to treat infection. Vancomycin encapsulated in gelatin microspheres had a controlled release of 7 days to prevent infection. Tranexamic acid was dissolved into phosphate-buffered saline or carboxymethylcellulose to provide a release of 6 hours to prevent blood loss after surgery. The microspheres and tranexamic acid were delivered to a target region using a water based spray system. The spray system demonstrated the delivery and distribution of drugs to a target region. The microsphere spray system is capable of spraying drugs onto a target region to prevent or treat blood loss and infection over time.
35

Thermally-Assisted Acoustofluidic Separation for Bioanalytical Applications

Dolatmoradi, Ata 09 June 2017 (has links)
Changes in the biomechanical properties of cells accompanying the development of various pathological conditions have been increasingly reported as biomarkers for various diseases and as a predictor of disease progression stages. For instance, cancer cells have been found to be less stiff compared to their healthy counterparts due to the proteomic and lipidomic dysregulations conferred by the underlying pathology. The separation and selective recovery of cells or extracellular vesicles secreted from such cells that have undergone these changes have been suggested to be of diagnostic and prognostic value. This dissertation first describes the implementation of a stiffness-based separation of phosphatidylcholine-based vesicles using a method first introduced based on the research in this work and was dubbed thermally-assisted acoustophoresis, or thermo-acoustophoresis. By tuning the temperature, we achieved the separation of vesicles of the same size, shape, and charge but with different stiffness values. It was observed that at a specific transition point, the acoustic contrast factor of vesicles changed sign from positive to negative. This change was mainly due to change in the compressibility of the vesicles, which is inversely proportional to stiffness. The acoustic contrast temperature (Tϕ), corresponding to the temperature at which the contrast factor switches sign, was determined to be unique to the composition of the vesicles. This unique temperature signature allowed us to develop this separation method of vesicles with distinct membrane stiffness with target outlet purities exceeding 95%. We have further explored the functionality of this method by experimenting with cholesterol-containing vesicles. In cells, the cholesterol content plays a crucial role in determining stiffness. Changes in the cholesterol content in cellular membranes can be an indication of pathological disorders. We evaluated the Tϕ of vesicles at different cholesterol molar ratios (Xchol) and developed a multi-stage lab-on-a-chip method to accomplish for the first time the separation of a three-vesicle mixture. Using Xchol = 0.1, 0.2, and 0.3 vesicles, we obtained efficiencies exceeding 93%. The simplicity, rapidity, and label-free nature of this approach holds promise as a diagnostic and separation tool for cells affected by diseases that affect the stiffness and extracellular vesicles such as exosomes and microvesicles.
36

Electrochemical Immunosensing of Cortisol in an Automated Microfluidic System Towards Point-of-Care Applications

Vasudev, Abhay 17 May 2013 (has links)
This dissertation describes the development of a label-free, electrochemical immunosensing platform integrated into a low-cost microfluidic system for the sensitive, selective and accurate detection of cortisol, a steroid hormone co-related with many physiological disorders. Abnormal levels of cortisol is indicative of conditions such as Cushing’s syndrome, Addison’s disease, adrenal insufficiencies and more recently post-traumatic stress disorder (PTSD). Electrochemical detection of immuno-complex formation is utilized for the sensitive detection of Cortisol using Anti-Cortisol antibodies immobilized on sensing electrodes. Electrochemical detection techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) have been utilized for the characterization and sensing of the label-free detection of Cortisol. The utilization of nanomaterial’s as the immobilizing matrix for Anti-cortisol antibodies that leads to improved sensor response has been explored. A hybrid nano-composite of Polyanaline-Ag/AgO film has been fabricated onto Au substrate using electrophoretic deposition for the preparation of electrochemical immunosening of cortisol. Using a conventional 3-electrode electrochemical cell, a linear sensing range of 1pM to 1µM at a sensitivity of 66µA/M and detection limit of 0.64pg/mL has been demonstrated for detection of cortisol. Alternately, a self-assembled monolayer (SAM) of dithiobis(succinimidylpropionte) (DTSP) has been fabricated for the modification of sensing electrode to immobilize with Anti-Cortisol antibodies. To increase the sensitivity at lower detection limit and to develop a point-of-care sensing platform, the DTSP-SAM has been fabricated on micromachined interdigitated microelectrodes (µIDE). Detection of cortisol is demonstrated at a sensitivity of 20.7µA/M and detection limit of 10pg/mL for a linear sensing range of 10pM to 200nM using the µIDE’s. A simple, low-cost microfluidic system is designed using low-temperature co-fired ceramics (LTCC) technology for the integration of the electrochemical cortisol immunosensor and automation of the immunoassay. For the first time, the non-specific adsorption of analyte on LTCC has been characterized for microfluidic applications. The design, fabrication technique and fluidic characterization of the immunoassay are presented. The DTSP-SAM based electrochemical immunosensor on µIDE is integrated into the LTCC microfluidic system and cortisol detection is achieved in the microfluidic system in a fully automated assay. The fully automated microfluidic immunosensor hold great promise for accurate, sensitive detection of cortisol in point-of-care applications.
37

Intraoperative Guidance for Pediatric Brain Surgery based on Optical Techniques

Song, Yinchen 30 June 2015 (has links)
For most of the patients with brain tumors and/or epilepsy, surgical resection of brain lesions, when applicable, remains one of the optimal treatment options. The success of the surgery hinges on accurate demarcation of neoplastic and epileptogenic brain tissue. The primary goal of this PhD dissertation is to demonstrate the feasibility of using various optical techniques in conjunction with sophisticated signal processing algorithms to differentiate brain tumor and epileptogenic cortex from normal brain tissue intraoperatively. In this dissertation, a new tissue differentiation algorithm was developed to detect brain tumors in vivo using a probe-based diffuse reflectance spectroscopy system. The system as well as the algorithm were validated experimentally on 20 pediatric patients undergoing brain tumor surgery at Nicklaus Children’s Hospital. Based on the three indicative parameters, which reflect hemodynamic and structural characteristics, the new algorithm was able to differentiate brain tumors from the normal brain with a very high accuracy. The main drawbacks of the probe-based system were its high susceptibility to artifacts induced by hand motion and its interference to the surgical procedure. Therefore, a new optical measurement scheme and its companion spectral interpretation algorithm were devised. The new measurement scheme was evaluated both theoretically with Monte Carlo simulation and experimentally using optical phantoms, which confirms the system is capable of consistently acquiring total diffuse reflectance spectra and accurately converting them to the ratio of reduced scattering coefficient to absorption coefficient (µs’(λ)/µa(λ)). The spectral interpretation algorithm for µs’(λ)/µa(λ) was also validated based on Monte Carlo simulation. In addition, it has been demonstrated that the new measurement scheme and the spectral interpretation algorithm together are capable of detecting significant hemodynamic and scattering variations from the Wistar rats’ somatosensory cortex under forepaw stimulation. Finally, the feasibility of using dynamic intrinsic optical imaging to distinguish epileptogenic and normal cortex was validated in an in vivo study involving 11 pediatric patients with intractable epilepsy. Novel data analysis methods were devised and applied to the data from the study; identification of the epileptogenic cortex was achieved with a high accuracy.
38

Design of a Passive Exoskeleton Spine

Zhang, Haohan 07 November 2014 (has links)
In this thesis, a passive exoskeleton spine was designed and evaluated by a series of biomechanics simulations. The design objectives were to reduce the human operator’s back muscle efforts and the intervertebral reaction torques during a full range sagittal plane spine flexion/extension. The biomechanics simulations were performed using the OpenSim modeling environment. To manipulate the simulations, a full body musculoskeletal model was created based on the OpenSim gait2354 and “lumbar spine” models. To support flexion and extension of the torso a “push-pull” strategy was proposed by applying external pushing and pulling forces on different locations on the torso. The external forces were optimized via simulations and then a physical exoskeleton prototype was built to evaluate the “push-pull” strategy in vivo. The prototype was tested on three different subjects where the sEMG and inertial data were collected to estimate the muscle force reduction and intervertebral torque reduction. The prototype assisted the users in sagittal plane flexion/extension and reduced the average muscle force and intervertebral reaction torque by an average of 371 N and 29 Nm, respectively.
39

Assessing Endothelial Dysfunction Estimating the Differences Between 3 Minute and 5 Minute Reactive Hyperemia

Saldin, Tamiko K 01 January 2019 (has links)
The purpose of this study was to define a lower standard cuff occlusion time to induce reactive hyperemia in assessing endothelial dysfunction. In this study, strong evidence was found by a novel technique that used oscillometric methods, which supported that 3 minute reactive hyperemia was sufficient to elicit a significant difference in arterial compliance from baseline. Twenty healthy Cal Poly students were assessed, (n=12 female, n=8 male) aged 22 years old with a standard deviation of 2.04 years. Arterial compliance was estimated by measuring the peak-to-peak oscillations for baseline, 3 minute reactive hyperemia, and 5 minute reactive hyperemia tests, with the result being statistical evidence of an increase in arterial compliance after 3 minutes of cuff occlusion compared to baseline. The peak-to-peak mean for the 3 minute reactive hyperemia test was significantly greater than the baseline peak-to-peak mean with p-values less than 0.0001. These results support that 3 minute reactive hyperemia is sufficient to assess endothelial dysfunction using oscillometry techniques. Endothelial dysfunction is the most significant predictor of a major adverse cardiovascular event, so this test can be used as an early detection tool for cardiovascular disease and allow patients to find treatment before irreversible damage is done to the body. Implementing this test into routine doctor checkups has the potential to have a significant effect on cardiovascular disease, which is the leading cause of death globally. The currently accepted clinical benchmark performed in hospitals uses high-frequency ultrasound with a standard cuff occlusion time of 5 minutes. Although noninvasive, 5 minutes of cuff occlusion causes slight discomfort to the patient and is not desirable. This test was improved and shortened by using a system based on the oscillometric method of blood pressure measurement. By reducing the duration of the test from 5 minute reactive hyperemia to 3 minute reactive hyperemia, this will make the procedure practical for an increased number of patients, providing a noninvasive option to regularly check for early symptoms of cardiovascular disease.
40

EEG Characterization During Motor Tasks That Are Difficult for Movement Disorder Patients

Aslam, Adam Joshua 01 December 2017 (has links)
Movement disorders are a group of syndromes that often arise due to neurological abnormalities. Approximately 40 million Americans are affected by some form of movement disorder, significantly impacting patients’ quality of life and their ability to live independently. Deep brain stimulation (DBS) is one treatment that has shown promising results in the past couple decades, however, the currently used open-loop system has several drawbacks. By implementing a closed-loop or adaptive DBS (aDBS) system, the need for expensive parameter reprogramming sessions would be reduced, side-effects may be relieved, and habituation could be avoided. Several biomarkers, for example signals or activity derived from electroencephalogram (EEG), could potentially be used as a feedback source for aDBS. Here, we attempted to characterize cortical EEG potentials in healthy subjects performing six tasks that are difficult for those with movement disorders. Using a 32-channel EEG cap with an amplifier sampling at 500 Hz, we performed our protocol on 11 college-aged volunteers lacking any known movement disorder. For each task, we analyzed task-related power (TRP) changes, spectrograms, and topographical maps. In a finger movement exercise, we found task-related depression (TRD) in the delta band at the F4 electrode, as well as TRD at the C3 electrode in the alpha band during a pencil-pickup task, and TRD at the F3 electrode in the beta band during voluntary swallowing. While delta-ERD in the finger movement exercise was likely due to ocular artifact, the other significant results were in line with what relevant literature would predict. The findings from the work, in conjunction with a future study involving movement disorder patients, can provide insight into the use of EEG as a feedback source for aDBS. Keywords: EEG, electroencephalography, neurostimulation, deep brain stimulation, movement disorders, closed-loop DBS, adaptive DBS, aDBS

Page generated in 0.1895 seconds