• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 8
  • 8
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biomedical signal analysis in automatic classification problems

Fuster García, Elíes 20 September 2012 (has links)
A lo largo de la última década hemos asistido a un desarrollo sin precedentes de las tecnologías de la salud. Los avances en la informatización, la creación de redes, las técnicas de imagen, la robótica, las micro/nano tecnologías, y la genómica, han contribuido a aumentar significativamente la cantidad y diversidad de información al alcance del personal clínico para el diagnóstico, pronóstico, tratamiento y seguimiento de los pacientes. Este aumento en la cantidad y diversidad de datos clínicos requiere del continuo desarrollo de técnicas y metodologías capaces de integrar estos datos, procesarlos, y dar soporte en su interpretación de una forma robusta y eficiente. En este contexto, esta Tesis se focaliza en el análisis y procesado de señales biomédicas y su uso en problemas de clasificación automática. Es decir, se focaliza en: el diseño e integración de algoritmos para el procesado automático de señales biomédicas, el desarrollo de nuevos métodos de extracción de características para señales, la evaluación de compatibilidad entre señales biomédicas, y el diseño de modelos de clasificación para problemas clínicos específicos. En la mayoría de casos contenidos en esta Tesis, estos problemas se sitúan en el ámbito de los sistemas de apoyo a la decisión clínica, es decir, de sistemas computacionales que proporcionan conocimiento experto para la decisión en el diagnóstico, pronóstico y tratamiento de los pacientes. Una de las principales contribuciones de esta tesis consiste en la evaluación de la compatibilidad entre espectros de resonancia magnética (ERM) obtenidos mediante dos tecnologías de escáneres de resonancia magnética coexistentes en la actualidad (escáneres de 1.5T y de 3T). Esta compatibilidad se evalúa en el contexto de clasificación automática de tumores cerebrales. Los resultados obtenidos en este trabajo sugieren que los clasificadores existentes basados en datos de ERM de 1.5T pueden ser aplicables a casos obtenidos con la nueva tecnolog / Fuster García, E. (2012). Biomedical signal analysis in automatic classification problems [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17176
2

Analysis Of Multichannel And Multimodal Biomedical Signals Using Recurrence Plot Based Techniques

Rangaprakash, D 07 1900 (has links) (PDF)
For most of the naturally occurring signals, especially biomedical signals, the underlying physical process generating the signal is often not fully known, making it difficult to obtain a parametric model. Therefore, signal processing techniques are used to analyze the signal for non-parametrically characterizing the underlying system from which the signals are produced. Most of the real life systems are nonlinear and time varying, which poses a challenge while characterizing them. Additionally, multiple sensors are used to extract signals from such systems, resulting in multichannel signals which are inherently coupled. In this thesis, we counter this challenge by using Recurrence Plot based techniques for characterizing biomedical systems such as heart or brain, using signals such as heart rate variability (HRV), electroencephalogram(EEG) or functional magnetic resonance imaging (fMRI), respectively, extracted from them. In time series analysis, it is well known that a system can be represented by a trajectory in an N-dimensional state space, which completely represents an instance of the system behavior. Such a system characterization has been done using dynamical invariants such as correlation dimension, Lyapunov exponent etc. Takens has shown that when the state variables of the underlying system are not known, one can obtain a trajectory in ‘phase space’ using only the signals obtained from such a system. The phase space trajectory is topologically equivalent to the state space trajectory. This enables us to characterize the system behavior from only the signals sensed from them. However, estimation of correlation dimension, Lyapunov exponent, etc, are vulnerable to non-stationarities in the signal and require large number of sample points for accurate computation, both of which are important in the case of biomedical signals. Alternatively, a technique called Recurrence Plots (RP) has been proposed, which addresses these concerns, apart from providing additional insights. Measures to characterize RPs of single and two channel data are called Recurrence Quantification Analysis (RQA) and cross RQA (CRQA), respectively. These methods have been applied with a good measure of success in diverse areas. However, they have not been studied extensively in the context of experimental biomedical signals, especially multichannel data. In this thesis, the RP technique and its associated measures are briefly reviewed. Using the computational tools developed for this thesis, RP technique has been applied on select single channel, multichannel and multimodal (i.e. multiple channels derived from different modalities) biomedical signals. Connectivity analysis is demonstrated as post-processing of RP analysis on multichannel signals such as EEG and fMRI. Finally, a novel metric, based on the modification of a CRQA measure is proposed, which shows improved results. For the case of single channel signal, we have considered a large database of HRV signals of 112 subjects recorded for both normal and abnormal (anxiety disorder and depression disorder) subjects, in both supine and standing positions. Existing RQA measures, Recurrence Rate and Determinism, were used to distinguish between normal and abnormal subjects with an accuracy of 58.93%. A new measure, MLV has been introduced, using which a classification accuracy of 98.2% is obtained. Correlation between probabilities of recurrence (CPR) is a CRQA measure used to characterize phase synchronization between two signals. In this work, we demonstrate its utility with application to multimodal and multichannel biomedical signals. First, for the multimodal case, we have computed running CPR (rCPR), a modification proposed by us, which allows dynamic estimation of CPR as a function of time, on multimodal cardiac signals (electrocardiogram and arterial blood pressure) and demonstrated that the method can clearly detect abnormalities (premature ventricular contractions); this has potential applications in cardiac care such as assisted automated diagnosis. Second, for the multichannel case, we have used 16 channel EEG signals recorded under various physiological states such as (i) global epileptic seizure and pre-seizure and (ii) focal epilepsy. CPR was computed pair-wise between the channels and a CPR matrix of all pairs was formed. Contour plot of the CPR matrix was obtained to illustrate synchronization. Statistical analysis of CPR matrix for 16 subjects of global epilepsy showed clear differences between pre-seizure and seizure conditions, and a linear discriminant classifier was used in distinguishing between the two conditions with 100% accuracy. Connectivity analysis of multichannel EEG signals was performed by post-processing of the CPR matrix to understand global network-level characterization of the brain. Brain connectivity using thresholded CPR matrix of multichannel EEG signals showed clear differences in the number and pattern of connections in brain connectivity graph between epileptic seizure and pre-seizure. Corresponding brain headmaps provide meaningful insights about synchronization in the brain in those states. K-means clustering of connectivity parameters of CPR and linear correlation obtained from global epileptic seizure and pre-seizure showed significantly larger cluster centroid distances for CPR as opposed to linear correlation, thereby demonstrating the efficacy of CPR. The headmap in the case of focal epilepsy clearly enables us to identify the focus of the epilepsy which provides certain diagnostic value. Connectivity analysis on multichannel fMRI signals was performed using CPR matrix and graph theoretic analysis. Adjacency matrix was obtained from CPR matrices after thresholding it using statistical significance tests. Graph theoretic analysis based on communicability was performed to obtain community structures for awake resting and anesthetic sedation states. Concurrent behavioral data showed memory impairment due to anesthesia. Given the fact that previous studies have implicated the hippocampus in memory function, the CPR results showing the hippocampus within the community in awake state and out of it in anesthesia state, demonstrated the biological plausibility of the CPR results. On the other hand, results from linear correlation were less biologically plausible. In biological systems, highly synchronized and desynchronized systems are of interest rather than moderately synchronized ones. However, CPR is approximately a monotonic function of synchronization and hence can assume values which indicate moderate synchronization. In order to emphasize high synchronization/ desynchronization and de-emphasize moderate synchronization, a new method of Correlation Synchronization Convergence Time (CSCT) is proposed. It is obtained using an iterative procedure involving the evaluation of CPR for successive autocorrelations until CPR converges to a chosen threshold. CSCT was evaluated for 16 channel EEG data and corresponding contour plots and histograms were obtained, which shows better discrimination between synchronized and asynchronized states compared to the conventional CPR. This thesis has demonstrated the efficacy of RP technique and associated measures in characterizing various classes of biomedical signals. The results obtained are corroborated by well known physiological facts, and they provide physiologically meaningful insights into the functioning of the underlying biological systems, with potential diagnostic value in healthcare.
3

Análise do sinal de variabilidade da frequência cardíaca através de estatística não extensiva: taxa de q-entropia multiescala / Heart rate variability analysis through nonextensive statistics: multiscale q-entropy rate

Silva, Luiz Eduardo Virgilio da 28 February 2013 (has links)
O corpo humano é um sistema complexo composto por vários subsistemas interdependentes, que interagem entre si em várias escalas. Sabe-se que essa complexidade fisiológica tende a diminuir com a presença de doenças e com o avanço da idade, reduzindo a capacidade de adaptação dos indivíduos. No sistema cardiovascular, uma das maneira de se avaliar sua dinâmica regulatória é através da análise da variabilidade da frequência cardíaca (VFC). Os métodos clássicos de análise da VFC são baseados em modelos lineares, como é o caso da análise espectral. Contudo, como os mecanismos fisiológicos de regulação cardíaca apresentam características não lineares, as análises utilizando tais modelos podem ser limitadas. Nos últimos tempos, várias propostas de métodos não lineares têm surgido. Porém, não se sabe de uma medida consistente com o conceito de complexidade fisiológica, onde tanto os regimes periódicos como aleatórios são caracterizados como perda de complexidade. Baseado no conceito de complexidade fisiológica, esta tese propõe novos métodos de análise não lineares para séries de VFC. Os métodos consistem da generalização de medidas de entropia já existentes, utilizando a mecânica estatística não aditiva de Tsallis e a técnica de geração de dados substitutos. Foi definido um método, chamado de qSDiff, que calcula a diferença entre a entropia de um sinal e a entropia média de suas séries substitutas. O método de entropia utilizado consiste de uma generalização da entropia amostral (SampEn), utilizando o paradigma não aditivo. Das séries qSDiff foram extraídos três atributos, que foram avaliados como possíveis índices de complexidade fisiológica. A entropia multiescala (MSE) também foi generalizada seguindo o paradigma não aditivo, e os mesmos atributos foram calculados em várias escalas. Os métodos foram aplicados em séries reais de VFC de humanos e de ratos, bem como em um conjunto de sinais simulados, formado por ruídos e mapas, este último em regimes caótico e periódico. O atributo qSDiffmax demonstrou ser consistente para baixas escalas ao passo que os atributos qmax e qzero para escalas maiores, separando e classificando os grupos quanto à complexidade fisiológica. Observou-se ainda uma possível relação entre estes q-atributos com a presença de caos, que precisa ser melhor estudada. Os resultados ainda apontam a possibilidade de que, na insuficiência cardíaca, ocorre maior degradação nos mecanismos de baixa escala, de curto período, ao passo que na fibrilação atrial o prejuízo se estenderia para escalas maiores. As medidas baseadas em entropia propostas são capazes de extrair informações importantes das séries de VFC, sendo mais consistentes com o conceito de complexidade fisiológica do que a SampEn (clássica). Reforçou-se a hipótese de que a complexidade se revela em múltiplas escalas de um sinal. Acreditamos que os métodos propostos podem contribuir bastante na análise da VFC e também de outros sinais biomédicos. / Human body is a complex system composed of several interdependent subsystems, interacting at various scales. It is known that physiological complexity tends to decrease with disease and aging, reducing the adaptative capabilities of the individual. In the cardiovascular system, one way to evaluate its regulatory dynamics is through the analysis of heart rate variability (HRV). Classical methods of HRV analysis are based on linear models, such as spectral analysis. However, as the physiological mechanisms regulating heart rate exhibit nonlinear characteristics, analyzes using such models may be limited. In the last years, several proposals nonlinear methods have emerged. Nevertheless, no one is known to be consistent with the physiological complexity theory, where both periodic and random regimes are characterized as complexity loss. Based on physiological complexity theory, this thesis proposes new methods for nonlinear HRV series analysis. The methods are generalization of existing entropy measures, through Tsallis nonadditive statistical mechanics and surrogate data. We defined a method, called qSDiff, which calculates the difference between the entropy of a signal and its surrogate data average entropy. The entropy method used is a generalization of sample entropy (SampEn), through nonadditive paradigm. From qSDiff we extracted three attributes, which were evaluated as potential physiological complexity indexes. Multiscale entropy (MSE) was also generalized following nonadditive paradigm, and the same attributes were calculated at various scales. The methods were applied to real human and rats HRV series, as well as to a set of simulated signals, consisting of noises and maps, the latter in chaotic and periodic regimes. qSDiffmax attribute proved to be consistent for low scales while qmax and qzero attributes to larger scales, separating and ranking groups in terms of physiological complexity. There was also found a possible relationship between these q-attributes with the presence of chaos, which must be further investigated. The results also suggested the possibility that, in congestive heart failure, degradation occurs rather at small scales or short time mechanisms, while in atrial fibrillation, damage would extend to larger scales. The proposed entropy based measures are able to extract important information of HRV series, being more consistent with physiological complexity theory than SampEn (classical). Results strengthened the hypothesis that complexity is revealed at multiple scales. We believe that the proposed methods can contribute to HRV as well as to other biomedical signals analysis.
4

Análise do sinal de variabilidade da frequência cardíaca através de estatística não extensiva: taxa de q-entropia multiescala / Heart rate variability analysis through nonextensive statistics: multiscale q-entropy rate

Luiz Eduardo Virgilio da Silva 28 February 2013 (has links)
O corpo humano é um sistema complexo composto por vários subsistemas interdependentes, que interagem entre si em várias escalas. Sabe-se que essa complexidade fisiológica tende a diminuir com a presença de doenças e com o avanço da idade, reduzindo a capacidade de adaptação dos indivíduos. No sistema cardiovascular, uma das maneira de se avaliar sua dinâmica regulatória é através da análise da variabilidade da frequência cardíaca (VFC). Os métodos clássicos de análise da VFC são baseados em modelos lineares, como é o caso da análise espectral. Contudo, como os mecanismos fisiológicos de regulação cardíaca apresentam características não lineares, as análises utilizando tais modelos podem ser limitadas. Nos últimos tempos, várias propostas de métodos não lineares têm surgido. Porém, não se sabe de uma medida consistente com o conceito de complexidade fisiológica, onde tanto os regimes periódicos como aleatórios são caracterizados como perda de complexidade. Baseado no conceito de complexidade fisiológica, esta tese propõe novos métodos de análise não lineares para séries de VFC. Os métodos consistem da generalização de medidas de entropia já existentes, utilizando a mecânica estatística não aditiva de Tsallis e a técnica de geração de dados substitutos. Foi definido um método, chamado de qSDiff, que calcula a diferença entre a entropia de um sinal e a entropia média de suas séries substitutas. O método de entropia utilizado consiste de uma generalização da entropia amostral (SampEn), utilizando o paradigma não aditivo. Das séries qSDiff foram extraídos três atributos, que foram avaliados como possíveis índices de complexidade fisiológica. A entropia multiescala (MSE) também foi generalizada seguindo o paradigma não aditivo, e os mesmos atributos foram calculados em várias escalas. Os métodos foram aplicados em séries reais de VFC de humanos e de ratos, bem como em um conjunto de sinais simulados, formado por ruídos e mapas, este último em regimes caótico e periódico. O atributo qSDiffmax demonstrou ser consistente para baixas escalas ao passo que os atributos qmax e qzero para escalas maiores, separando e classificando os grupos quanto à complexidade fisiológica. Observou-se ainda uma possível relação entre estes q-atributos com a presença de caos, que precisa ser melhor estudada. Os resultados ainda apontam a possibilidade de que, na insuficiência cardíaca, ocorre maior degradação nos mecanismos de baixa escala, de curto período, ao passo que na fibrilação atrial o prejuízo se estenderia para escalas maiores. As medidas baseadas em entropia propostas são capazes de extrair informações importantes das séries de VFC, sendo mais consistentes com o conceito de complexidade fisiológica do que a SampEn (clássica). Reforçou-se a hipótese de que a complexidade se revela em múltiplas escalas de um sinal. Acreditamos que os métodos propostos podem contribuir bastante na análise da VFC e também de outros sinais biomédicos. / Human body is a complex system composed of several interdependent subsystems, interacting at various scales. It is known that physiological complexity tends to decrease with disease and aging, reducing the adaptative capabilities of the individual. In the cardiovascular system, one way to evaluate its regulatory dynamics is through the analysis of heart rate variability (HRV). Classical methods of HRV analysis are based on linear models, such as spectral analysis. However, as the physiological mechanisms regulating heart rate exhibit nonlinear characteristics, analyzes using such models may be limited. In the last years, several proposals nonlinear methods have emerged. Nevertheless, no one is known to be consistent with the physiological complexity theory, where both periodic and random regimes are characterized as complexity loss. Based on physiological complexity theory, this thesis proposes new methods for nonlinear HRV series analysis. The methods are generalization of existing entropy measures, through Tsallis nonadditive statistical mechanics and surrogate data. We defined a method, called qSDiff, which calculates the difference between the entropy of a signal and its surrogate data average entropy. The entropy method used is a generalization of sample entropy (SampEn), through nonadditive paradigm. From qSDiff we extracted three attributes, which were evaluated as potential physiological complexity indexes. Multiscale entropy (MSE) was also generalized following nonadditive paradigm, and the same attributes were calculated at various scales. The methods were applied to real human and rats HRV series, as well as to a set of simulated signals, consisting of noises and maps, the latter in chaotic and periodic regimes. qSDiffmax attribute proved to be consistent for low scales while qmax and qzero attributes to larger scales, separating and ranking groups in terms of physiological complexity. There was also found a possible relationship between these q-attributes with the presence of chaos, which must be further investigated. The results also suggested the possibility that, in congestive heart failure, degradation occurs rather at small scales or short time mechanisms, while in atrial fibrillation, damage would extend to larger scales. The proposed entropy based measures are able to extract important information of HRV series, being more consistent with physiological complexity theory than SampEn (classical). Results strengthened the hypothesis that complexity is revealed at multiple scales. We believe that the proposed methods can contribute to HRV as well as to other biomedical signals analysis.
5

Avaliação da q-transformada de Fourier como ferramenta não linear de estudos de sinais biomédicos / Assessment of the q-Fourier transform as nonlinear tool for biomedical signals studies

Duque, Juliano Jinzenji 14 December 2012 (has links)
A análise de sinais biomédicos é uma área de pesquisa importante pois diversos processos fisiológicos que ocorrem no corpo humano podem ter suas atividades registradas como sinais. Neste trabalho, investigou-se a q-transformada de Fourier (q-FT), uma generalização não linear da transformada de Fourier baseada no formalismo não extensivo de Tsallis, que é caracterizado pela presença do parâmetro q. Foram realizados estudos analíticos e experimentos computacionais com sinais reais e simulados. A partir da dfinição da q-FT, um método de análise espectral generalizado para aplicação em sinais biomédicos foi desenvolvido. Este método foi avaliado através de experimentos com séries de intervalos RR cardíacos, usadas em estudos de variabilidade da frequência cardíaca. Os resultados ajudam a esclarecer algumas propriedades desta q-transformada, porém não indicam que o método desenvolvido seja efetivo para a análise espectral de séries RR. Entretanto, estudos posteriores de novos métodos de análise espectral baseados no formalismo de Tsallis podem ser desenvolvidos para a investigação de sinais biomédicos. / Biomedical signals analysis is an important research eld because many physiological processes occurring in human body can have their activities recorded as signals.This study investigated the q-Fourier transform (q-FT), a nonlinear generalization of Fourier transform based on the Tsallis nonextensive formalism, which is characterized by q parameter. Analytical studies and computational experiments with simulated and real signals were conducted. From the denition of q-FT, a generalized spectral analysis method for application in biomedical signals has been developed. This method was assessed through experiments with cardiac RR interval time series, which are used in studies of heart rate variability. The results help to clarify some properties of the q-Fourier transform, but do not indicate that the developed method is efective for the spectral analysis of RR series. However, further studies on new spectral analysis methods based on Tsallis formalism can be developed for biomedical signals investigation.
6

Ensemble de técnicas de representação simbólica para reconhecimento biométrico baseado em sinais de ECG / Ensemble of symbolic representation techniques for biometric recognition based on ECG signals

Passos, Henrique dos Santos 19 April 2018 (has links)
Métodos de identificação de pessoas sempre foram muito importantes para toda a sociedade. Atualmente, as pesquisas em biometria vêm sendo amplamente incentivadas por diversos setores da indústria mundial com o objetivo de melhorar ou substituir os atuais sistemas de segurança e de identificação de pessoas. O campo da biometria abarca uma grande variedade de tecnologias usadas para identificar e verificar a identidade de uma pessoa por meio da mensuração e análise de diversas características físicas e/ou comportamentais do ser humano. Diversas modalidades biométricas têm sido propostas para reconhecimento de pessoas, como impressão digital, íris, face e fala. Estas modalidades biométricas possuem características distintas em termos de desempenho, mensurabilidade e aceitabilidade. Uma questão a ser considerada com a aplicação biométrica é sua robustez a ataques por circunvenção, repetição e ofuscação. Esses ataques estão se tornando cada vez mais frequentes e questionamentos estão sendo levantados a respeito dos níveis de segurança das formas de reconhecimento. Sinais biomédicos como eletrocardiograma (ECG), eletroencefalograma (EEG) e eletromiograma (EMG) têm sido cada vez mais estudados e aplicados ao reconhecimento biométrico. Em específico, os sinais de ECG têm sido largamente adotados para o reconhecimento biométrico em diversos trabalhos. Por outro lado, análise de séries temporais tem sido usada com sucesso em muitas diferentes aplicações para identificar padrões temporais nos dados. Embora dinâmica simples possa ser observada com ferramentas analíticas tradicionais tais como transformada de fourier, transformada wavelet, a representação simbólica pode melhorar a análise de processos que são complexos e possivelmente caótico. Além disso, representação simbólica pode também reduzir a sensibilidade a ruído e melhorar bastante a eficiência computacional. No entanto, existem aspectos estruturais e paramétricos de projeto que podem conduzir a uma degradação de desempenho. Na ausência de uma metodologia sistemática e de baixo custo para a proposição de técnicas de representação simbólicas otimamente especificadas, os comitês de máquinas, mais especificamente ensemble, se apresentam como alternativas promissoras. Neste estudo, os componentes do ensemble, que correspondem as técnicas de representação simbólicas, e seus respectivos parâmetros foram selecionados via algoritmos evolutivos. O objetivo é explorar conjuntamente potencialidades advindas das técnicas de representação simbólicas e comitê de máquinas para reconhecimento biométrico baseado em sinais de ECG. Resultados experimentais conduzidos sobre dois conjuntos de dados disponíveis publicamente indicam que a abordagem proposta pode melhorar o desempenho do reconhecimento quando comparada com as técnicas tradicionais / Identification people methods have been very important for the whole society. Currently, research on biometrics have been widely encouraged by various sectors of the industry worldwide in order to improve or replace existing security systems and people identification. The field of biometrics includes a variety of technologies used to identify or verify the identity of a person by measuring and analyzing various physical and/or behavioral aspects of the human being. Several biometric methods have been proposed for recognition of people, such as fingerprint, iris, face and speech. These biometric modalities have different characteristics in terms of performance, measurability and acceptability. One issue to be considered with the biometric application in the real world is its robustness to attacks by circumvention, repetition and obfuscation. These attacks are becoming more frequent and more questions are being raised about the levels of security that this technology can offer. Biomedical signals such as electrocardiogram (ECG), electroencephalogram (EEG) and electromyogram (EMG) have been increasingly studied and applied to biometric recognition. Specifically, ECG signals have been widely adopted for biometric recognition in various works. On the other hand, time series analysis has been used successfully in many different applications to identify temporal patterns in the data. Although simple dynamics can be observed with traditional analytical tools such as fourier transform, wavelet transform, the symbolic representation can improve the analysis of processes that are complex and possibly chaotic. In addition, symbolic representation can also reduce noise sensitivity and greatly improve computational efficiency. However, there are structural and parametric design aspects that can lead to performance degradation. In the absence of a systematic and inexpensive methodology for proposing optimally specified symbolic representation techniques, machine committees, more specifically ensemble, present themselves as promising alternatives. In this study, the components of the committee, which correspond to techniques of symbolic representation, and their respective parameters were selected via evolutionary algorithms. The objective is to jointly explore the potentialities of both symbolic representation techniques and machine committee for biometric recognition based on ECG signals. Experimental results conducted on two publicly available datasets indicate that the proposed approach may improve recognition performance when compared to traditional techniques
7

Ensemble de técnicas de representação simbólica para reconhecimento biométrico baseado em sinais de ECG / Ensemble of symbolic representation techniques for biometric recognition based on ECG signals

Henrique dos Santos Passos 19 April 2018 (has links)
Métodos de identificação de pessoas sempre foram muito importantes para toda a sociedade. Atualmente, as pesquisas em biometria vêm sendo amplamente incentivadas por diversos setores da indústria mundial com o objetivo de melhorar ou substituir os atuais sistemas de segurança e de identificação de pessoas. O campo da biometria abarca uma grande variedade de tecnologias usadas para identificar e verificar a identidade de uma pessoa por meio da mensuração e análise de diversas características físicas e/ou comportamentais do ser humano. Diversas modalidades biométricas têm sido propostas para reconhecimento de pessoas, como impressão digital, íris, face e fala. Estas modalidades biométricas possuem características distintas em termos de desempenho, mensurabilidade e aceitabilidade. Uma questão a ser considerada com a aplicação biométrica é sua robustez a ataques por circunvenção, repetição e ofuscação. Esses ataques estão se tornando cada vez mais frequentes e questionamentos estão sendo levantados a respeito dos níveis de segurança das formas de reconhecimento. Sinais biomédicos como eletrocardiograma (ECG), eletroencefalograma (EEG) e eletromiograma (EMG) têm sido cada vez mais estudados e aplicados ao reconhecimento biométrico. Em específico, os sinais de ECG têm sido largamente adotados para o reconhecimento biométrico em diversos trabalhos. Por outro lado, análise de séries temporais tem sido usada com sucesso em muitas diferentes aplicações para identificar padrões temporais nos dados. Embora dinâmica simples possa ser observada com ferramentas analíticas tradicionais tais como transformada de fourier, transformada wavelet, a representação simbólica pode melhorar a análise de processos que são complexos e possivelmente caótico. Além disso, representação simbólica pode também reduzir a sensibilidade a ruído e melhorar bastante a eficiência computacional. No entanto, existem aspectos estruturais e paramétricos de projeto que podem conduzir a uma degradação de desempenho. Na ausência de uma metodologia sistemática e de baixo custo para a proposição de técnicas de representação simbólicas otimamente especificadas, os comitês de máquinas, mais especificamente ensemble, se apresentam como alternativas promissoras. Neste estudo, os componentes do ensemble, que correspondem as técnicas de representação simbólicas, e seus respectivos parâmetros foram selecionados via algoritmos evolutivos. O objetivo é explorar conjuntamente potencialidades advindas das técnicas de representação simbólicas e comitê de máquinas para reconhecimento biométrico baseado em sinais de ECG. Resultados experimentais conduzidos sobre dois conjuntos de dados disponíveis publicamente indicam que a abordagem proposta pode melhorar o desempenho do reconhecimento quando comparada com as técnicas tradicionais / Identification people methods have been very important for the whole society. Currently, research on biometrics have been widely encouraged by various sectors of the industry worldwide in order to improve or replace existing security systems and people identification. The field of biometrics includes a variety of technologies used to identify or verify the identity of a person by measuring and analyzing various physical and/or behavioral aspects of the human being. Several biometric methods have been proposed for recognition of people, such as fingerprint, iris, face and speech. These biometric modalities have different characteristics in terms of performance, measurability and acceptability. One issue to be considered with the biometric application in the real world is its robustness to attacks by circumvention, repetition and obfuscation. These attacks are becoming more frequent and more questions are being raised about the levels of security that this technology can offer. Biomedical signals such as electrocardiogram (ECG), electroencephalogram (EEG) and electromyogram (EMG) have been increasingly studied and applied to biometric recognition. Specifically, ECG signals have been widely adopted for biometric recognition in various works. On the other hand, time series analysis has been used successfully in many different applications to identify temporal patterns in the data. Although simple dynamics can be observed with traditional analytical tools such as fourier transform, wavelet transform, the symbolic representation can improve the analysis of processes that are complex and possibly chaotic. In addition, symbolic representation can also reduce noise sensitivity and greatly improve computational efficiency. However, there are structural and parametric design aspects that can lead to performance degradation. In the absence of a systematic and inexpensive methodology for proposing optimally specified symbolic representation techniques, machine committees, more specifically ensemble, present themselves as promising alternatives. In this study, the components of the committee, which correspond to techniques of symbolic representation, and their respective parameters were selected via evolutionary algorithms. The objective is to jointly explore the potentialities of both symbolic representation techniques and machine committee for biometric recognition based on ECG signals. Experimental results conducted on two publicly available datasets indicate that the proposed approach may improve recognition performance when compared to traditional techniques
8

Avaliação da q-transformada de Fourier como ferramenta não linear de estudos de sinais biomédicos / Assessment of the q-Fourier transform as nonlinear tool for biomedical signals studies

Juliano Jinzenji Duque 14 December 2012 (has links)
A análise de sinais biomédicos é uma área de pesquisa importante pois diversos processos fisiológicos que ocorrem no corpo humano podem ter suas atividades registradas como sinais. Neste trabalho, investigou-se a q-transformada de Fourier (q-FT), uma generalização não linear da transformada de Fourier baseada no formalismo não extensivo de Tsallis, que é caracterizado pela presença do parâmetro q. Foram realizados estudos analíticos e experimentos computacionais com sinais reais e simulados. A partir da dfinição da q-FT, um método de análise espectral generalizado para aplicação em sinais biomédicos foi desenvolvido. Este método foi avaliado através de experimentos com séries de intervalos RR cardíacos, usadas em estudos de variabilidade da frequência cardíaca. Os resultados ajudam a esclarecer algumas propriedades desta q-transformada, porém não indicam que o método desenvolvido seja efetivo para a análise espectral de séries RR. Entretanto, estudos posteriores de novos métodos de análise espectral baseados no formalismo de Tsallis podem ser desenvolvidos para a investigação de sinais biomédicos. / Biomedical signals analysis is an important research eld because many physiological processes occurring in human body can have their activities recorded as signals.This study investigated the q-Fourier transform (q-FT), a nonlinear generalization of Fourier transform based on the Tsallis nonextensive formalism, which is characterized by q parameter. Analytical studies and computational experiments with simulated and real signals were conducted. From the denition of q-FT, a generalized spectral analysis method for application in biomedical signals has been developed. This method was assessed through experiments with cardiac RR interval time series, which are used in studies of heart rate variability. The results help to clarify some properties of the q-Fourier transform, but do not indicate that the developed method is efective for the spectral analysis of RR series. However, further studies on new spectral analysis methods based on Tsallis formalism can be developed for biomedical signals investigation.
9

Codificação e compressão iterativa de sinais biomédicos / Iterative encoding and compression of biomedical signals

Corte Real, Luiz Fernando Oliveira 08 March 2013 (has links)
Em Biomedicina, a detecção e a quanticação de anormalidades presentes num sinal são desejáveis. Uma estratégia de codicação baseada em extração de características, tais como picos ou frequências, pode não capturar todas as irregularidades. Assim, uma representação baseada em funções de base denidas com conhecimento a priori do sinal pode ser mais precisa para aplicações biomédicas. A escolha das funções base depende da natureza siológica do sinal e de suas peculiaridades. Sinais de eletrocardiograma (ECG) e eletroencefalograma (EEG) exibem características bem denidas. ECG, por exemplo, é um sinal elétrico composto de uma forma de onda especíca (P, QRS e T). Se as características de um sinal a ser sintetizado são bem compreendidas, é possível derivar uma assinatura para o sinal. Uma codicação apropriada permite a extração de parâmetros relevantes para sua análise, tais como anormalidades num ciclo cardíaco representadas por uma alteração no sinal de ECG, ou então uma excitação das ondas cerebrais representada por uma modicação no sinal de EEG. O objetivo deste projeto é introduzir uma nova técnica de codicação de sinais, que representa um sinal pela soma de funções sigmoides para aproximar iterativamente o sinal medido, com foco em aplicações biomédicas. Funções sigmoides tendem a reproduzir bem as grandes variações presentes em sinais biomédicos, daí a escolha de usá-las na codicação deste tipo de sinal. Serão explorados o nível de compressão dos dados, bem como a taxa de convergência. A técnica desenvolvida será comparada com técnicas convencionais de codicação e sua robustez será avaliada. Uma estratégia de codicação ótima pode trazer benefícios não só para a compressão, mas também na criação de assinaturas de sinais representando tanto condições siológicas normais como patológicas. / In Biomedicine, detection and quantication of abnormalities present in a signal are desired. An encoding strategy based on feature extraction, such as peaks or frequencies, may not capture all irregularities. Thus, a function-based representation, constructed using a priori knowledge of signal characteristics, may be more accurate for biomedical applications. The choice of the basis function depends on the physiological nature of the signal and its specic features. Electrocardiogram (ECG) and electroencephalogram (EEG) signals exhibit well-dened characteristics. ECG, for instance, is an electrical signal composed of specic waveform (P, QRS, and T). If the characteristics of a signal to be synthesized are well understood, its possible to derive a signal signature. An appropriate encoding allows the extraction of parameters relevant for its analysis, such as, abnormalities in a cardiac cycle represented by an alteration in the ECG signal, or an excitation of the brain waves represented by a modication of the EEG. The objective of this project is to introduce a novel signal encoding technique that represents a signal by a sum of sigmoidal functions to iteratively approximate the measured signal, targeted at biomedical applications. Sigmoidal functions tend to reproduce well large variations in biomedical signals, hence their use for coding this type of signal. We explore the data compression level as well as the convergence rate. We also compare it to conventional encoding techniques and assess the robustness of this model. An optimal encoding strategy may bring not only benets in compression, but also in the creation of signatures for signals representing both physiological and pathological conditions.
10

Μέθοδοι για ανίχνευση και χαρακτηρισμό βιοσημάτων σε θορυβώδεις χρονοσειρές με βάση το μετασχηματισμό Hilbert-Huang

Καραγιάννης, Αλέξανδρος 10 August 2011 (has links)
Η διπλωματική εργασία με τίτλο «Μέθοδοι για Ανίχνευση και Χαρακτηρισμό Βιοσημάτων σε Θορυβώδεις Χρονοσειρές βασισμένοι στο Μετασχηματισμό Hilbert-Huang» μελετάει ζητήματα που σχετίζονται με βιοϊατρικά σήματα και την ανάλυση τους. Γίνεται διερεύνηση των διαθέσιμων τεχνικών και μεθόδων ανάλυσης βιοϊατρικών σημάτων, επισημαίνονται τα ιδιαίτερα χαρακτηριστικά των χρονοσειρών που προκύπτουν από την παρατήρηση και καταγραφή των σημάτων και έμφαση δίνεται στη μη στασιμότητα, την μη γραμμικότητα των υποκείμενων φυσικών διεργασιών και την ανάγκη προσαρμοστικότητας της μεθόδου. Μια μέθοδος που ικανοποιεί αυτές τις απαιτήσεις είναι η εμπειρική μέθοδος αποσύνθεσης η οποία αναλύει ένα σήμα σε ένα σύνολο συνιστωσών (IMFs) από τις οποίες ένα υποσύνολο θεωρείται ότι έχει φυσική σημασία. Επιπλέον, με το μετασχηματισμό Hilbert ανιχνεύονται οι στιγμιαίες συχνότητες και διαμορφώνεται η χρονοσυχνοτική κατανομή του σήματος. Τα θέματα που διερευνώνται αναφορικά με την εμπειρική μέθοδο αποσύνθεσης αφορούν τη στατιστική σημαντικότητα των IMFs, την αποθορυβοποίηση βιοϊατρικών σημάτων, την εξαγωγή χαρακτηριστικών από ηλεκτροκαρδιογράφημα και την απόδοση της μεθόδου. Ειδικά η απόδοση της εμπειρικής μεθόδου αποσύνθεσης είναι κρίσιμη παράμετρος για συστήματα με περιορισμένους πόρους όπως είναι οι κόμβοι ασύρματων δικτύων αισθητήρων ή τα ενσωματωμένα συστήματα. Η μοντελοποίηση μεθόδων που υλοποιούνται στο επίπεδο κόμβων ασύρματου δικτύου αισθητήρων είναι απαραίτητη για τη βέλτιστη διαχείριση πόρων και τον προγραμματισμό διεργασιών ώστε να μην διαταραχθεί η λειτουργία και λειτουργικότητα του συστήματος / This diploma thesis entitled "Methods for Identification and Characterization of Biosignals in Noise corrupted Time Series based on Hilbert-Huang Transform " studies issues concerning biomedical signal analysis. There is a review of the available techniques and methods for biomedical signal analysis pointing at certain characteristics of biomedical time series such as non stationarity, the non linearity of the underlying physical process and the need for the adaptive nature of the analysis method. One method that meets these requirements is considered to be the Empirical Mode Decomposition (EMD) which decomposes a signal into a set of components (IMFs) that a subset of them is believed to have a physical meaning. Application of Hilbert Transform on these IMFs provides the instantaneous frequencies and forms the time-frequency distribution of the signal. Issues studied are related to the statistical significance of the IMFs, denoising of biomedical signals, characteristics extraction and feature selection out of the electrocardiogram as well as the performance of the method. Particularly, the performance of empirical mode decomposition is considered to be a critical parameter especially in the case of implementation on nodes of wireless sensor networks or generally embedded systems due to the limited amount of resources available onboard. Modeling method's performance and demand for resources is a significant task facilitating the optimum resource management and task execution schedule of these systems.

Page generated in 0.112 seconds