• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies of the relationship between the surface electromyogram, joint torque and impedance

Dai, Chenyun 20 December 2016 (has links)
"This compendium-format dissertation (i.e., comprised mostly of published and in-process articles) primarily reports on system identification methods that relate the surface electromyogram (EMG)—the electrical activity of skeletal muscles—to mechanical kinetics. The methods focus on activities of the elbow and hand-wrist. The relationship between the surface EMG and joint impedance was initially studied. My work provided a complete second-order EMG-based impedance characterization of stiffness, viscosity and inertia over a complete range of nominal torques, from a single perturbation trial with slowly varied torque. A single perturbation trial provides a more convenient method for impedance evaluation. The RMS errors of the EMG-based method were 20.01% for stiffness and 7.05% for viscosity, compared with the traditional mechanical measurement. Three projects studied the relationship between EMG and force/torque, a topic that has been studied for a number of years. Optimal models use whitened EMG amplitude, combining multiple EMG channels and a polynomial equation to describe this relationship. First, we used three techniques to improve current models at the elbow joint. Three more features were extracted from the EMG (waveform length, slope sign change rate and zero crossing rate), in addition to EMG amplitude. Each EMG channel was used separately, compared to previous studies which combined multiple channels from biceps and, separately, from triceps muscles. Finally, an exponential power law model was used. Each of these improvement techniques showed better performance (P<0.05 and ~0.7 percent maximum voluntary contraction (%MVC) error reduction from a nominal error of 5.5%MVC) than the current “optimal” model. However, the combination of pairs of these techniques did not further improve results. Second, traditional prostheses only control 1 degree of freedom (DoF) at a time. My work provided evidence for the feasibility of controlling 2-DoF wrist movements simultaneously, with a minimum number of electrodes. Results suggested that as few as four conventional electrodes, optimally located about the forearm, could provide 2-DoF simultaneous, independent and proportional control with error ranging from 9.0–10.4 %MVC, which is similar to the 1-DoF approach (error from 8.8–9.8 %MVC) currently used for commercial prosthesis control. The third project was similar to the second, except that this project studied controlling a 1-DoF wrist with one hand DoF simultaneously. It also demonstrated good performance with the error ranging from 7.8-8.7 %MVC, compared with 1-DoF control. Additionally, I participated in two team projects—EMG decomposition and static wrist EMG to torque—which are described herein. "
2

Αναγνώριση βασικών κινήσεων του χεριού με χρήση ηλεκτρομυογραφήματος / Recognition of basic hand movements using electromyography

Σαψάνης, Χρήστος 13 October 2013 (has links)
Ο στόχος αυτής της εργασίας ήταν η αναγνώριση έξι βασικών κινήσεων του χεριού με χρήση δύο συστημάτων. Όντας θέμα διεπιστημονικού επιπέδου έγινε μελέτη της ανατομίας των μυών του πήχη, των βιοσημάτων, της μεθόδου της ηλεκτρομυογραφίας (ΗΜΓ) και μεθόδων αναγνώρισης προτύπων. Παράλληλα, το σήμα περιείχε αρκετό θόρυβο και έπρεπε να αναλυθεί, με χρήση του EMD, να εξαχθούν χαρακτηριστικά αλλά και να μειωθεί η διαστασιμότητά τους, με χρήση των RELIEF και PCA, για βελτίωση του ποσοστού επιτυχίας ταξινόμησης. Στο πρώτο μέρος γίνεται χρήση συστήματος ΗΜΓ της Delsys αρχικά σε ένα άτομο και στη συνέχεια σε έξι άτομα με το κατά μέσο όρο επιτυχημένης ταξινόμησης, για τις έξι αυτές κινήσεις, να αγγίζει ποσοστά άνω του 80%. Το δεύτερο μέρος περιλαμβάνει την κατασκευή αυτόνομου συστήματος ΗΜΓ με χρήση του Arduino μικροελεγκτή, αισθητήρων ΗΜΓ και ηλεκτροδίων, τα οποία είναι τοποθετημένα σε ένα ελαστικό γάντι. Τα αποτελέσματα ταξινόμησης σε αυτή την περίπτωση αγγίζουν το 75%. / The aim of this work was to identify six basic movements of the hand using two systems. Being an interdisciplinary topic, there has been conducted studying in the anatomy of forearm muscles, biosignals, the method of electromyography (EMG) and methods of pattern recognition. Moreover, the signal contained enough noise and had to be analyzed, using EMD, to extract features and to reduce its dimensionality, using RELIEF and PCA, to improve the success rate of classification. The first part uses an EMG system of Delsys initially for an individual and then for six people with the average successful classification, for these six movements at rates of over 80%. The second part involves the construction of an autonomous system EMG using an Arduino microcontroller, EMG sensors and electrodes, which are arranged in an elastic glove. Classification results in this case reached 75% of success.

Page generated in 0.091 seconds