• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrogen Bonding Interactions of Ferrocene-peptides: From Molecule to Large Scale Assemblies

Beheshti, Samaneh 10 December 2012 (has links)
The main goal of this thesis was to explore the role of H-bonding interactions in ferrocene peptide conjugates at the molecular and supramolecular level. With the help of detailed spectroscopic and crystallographic studies, the intermolecular association of a range of conjugates was studied and described here. It was shown that C-terminal modifications directed the supramolecular assembly. In the case of Fc[CO-Gly-Val-OH]2, the C-terminal carboxylate group directed intermolecular interactions, causing formation of a supramolecular architecture that was characterized by large solvent-filled hydrophobic channels. In the absence of this directional group, as was the case in Fc[CO-Leu-Val-OMe]2 extended β-sheets were formed. Hierarchical self-assembly of disubstituted ferrocene peptide conjugates possessing Gly-Val-Phe and Gly-Val-Phe-Phe peptide substituents gave rise to nano- and micro-sized assemblies. Spontaneous self-assembly of Fc-peptides through intra-and intermolecular hydrogen bonding interactions induced supramolecular building blocks, which further associated to fibers, large fibrous crystals, and twisted ropes. Next, intermolecular H-bonding interactions were studied using a surface-based approach. A fragment of the amyloid-beta (Aβ) peptide was bound to a gold surface through a C-terminal Cys. Various aspects of the peptide film were examined using different electrochemical and surface analytical techniques. The interaction of Congo red and of Lys-Leu-Val-Phe-Phe with the immobilized Aβ fragment was studied using electrochemical methods, showing responses that indicated intermolecular interactions. This surface approach was used to probe the interaction of a series of ferrocene peptides (Fc-CO-Leu-Val-Phe-Phe-OX and Fc-CO-Lys(Boc)-Leu-Val-Phe-Phe-OX with X=H and Me) with the surface-bound Aβ fragment. Biomolecular interactions between Fc-peptides and the Aβ-modified surface were studied by electrochemical methods. The current response of the Fc redox process was modulated by the interaction with the Aβ-modified surface.
2

Hydrogen Bonding Interactions of Ferrocene-peptides: From Molecule to Large Scale Assemblies

Beheshti, Samaneh 10 December 2012 (has links)
The main goal of this thesis was to explore the role of H-bonding interactions in ferrocene peptide conjugates at the molecular and supramolecular level. With the help of detailed spectroscopic and crystallographic studies, the intermolecular association of a range of conjugates was studied and described here. It was shown that C-terminal modifications directed the supramolecular assembly. In the case of Fc[CO-Gly-Val-OH]2, the C-terminal carboxylate group directed intermolecular interactions, causing formation of a supramolecular architecture that was characterized by large solvent-filled hydrophobic channels. In the absence of this directional group, as was the case in Fc[CO-Leu-Val-OMe]2 extended β-sheets were formed. Hierarchical self-assembly of disubstituted ferrocene peptide conjugates possessing Gly-Val-Phe and Gly-Val-Phe-Phe peptide substituents gave rise to nano- and micro-sized assemblies. Spontaneous self-assembly of Fc-peptides through intra-and intermolecular hydrogen bonding interactions induced supramolecular building blocks, which further associated to fibers, large fibrous crystals, and twisted ropes. Next, intermolecular H-bonding interactions were studied using a surface-based approach. A fragment of the amyloid-beta (Aβ) peptide was bound to a gold surface through a C-terminal Cys. Various aspects of the peptide film were examined using different electrochemical and surface analytical techniques. The interaction of Congo red and of Lys-Leu-Val-Phe-Phe with the immobilized Aβ fragment was studied using electrochemical methods, showing responses that indicated intermolecular interactions. This surface approach was used to probe the interaction of a series of ferrocene peptides (Fc-CO-Leu-Val-Phe-Phe-OX and Fc-CO-Lys(Boc)-Leu-Val-Phe-Phe-OX with X=H and Me) with the surface-bound Aβ fragment. Biomolecular interactions between Fc-peptides and the Aβ-modified surface were studied by electrochemical methods. The current response of the Fc redox process was modulated by the interaction with the Aβ-modified surface.

Page generated in 0.0595 seconds