• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, optimisation and costing of a novel forced-upflow bioreactor for bioremediation of leachates from selected landfill sites in KwaZulu-Natal.

Vaughan, Halina. January 2011 (has links)
Most waste generated in South Africa is sent to landfills for disposal, and although it is confined in specific areas, it can potentially affect both above and below ground water resources, impacting environmental and public health. This is particularly relevant in a country where water supplies are limited and groundwater resources are prone to pollution. The primary objective of this study was to assess the performance of an upflow packed-bed bioreactor purposedesigned for the treatment of leachates produced by landfills in the Durban Metropolitan Area (DMA). The effect of parameters such as the nature of the biofilm support matrix, aeration rate and recycle rate on the efficacy of the system were investigated. Another major aim of the project was to develop a low maintenance technology that could, nonetheless, bioremediate leachate effectively at minimum cost. This aspect of process design is a crucial factor in areas where there is a shortage of both funds and skilled labour. The glass 132 l packed-bed upflow bioreactor was evaluated by measuring its efficiency in terms of chemical oxygen demand (COD) and biological oxygen demand (BOD) reduction and ammonia removal. The bioreactor could be configured as a batch-type system, which was useful for comparing operating conditions; or as a continuous cascade system, which was used to assess its overall performance. Different biofilm support matrices viz. various grades of pine bark, plastic bioballs and ceramic noodles were evaluated in 22 l batch-type reactors. Leachates from five landfill sites were remediated during the course of the study, and only the leachate from Shongweni landfill, which had a remarkably low BOD:COD ratio (0.05), was intractable and could not be successfully treated; even in flask trials designed to test strategies such as augmentation of microflora and biostimulation. The other leachates investigated were from the Umlazi, Marianhill, Bisarsar Road (all general sites) and Bul-Bul Drive (a semi-hazardous site) landfills, all of which were remediated to some degree. Originally, leachate from the Umlazi landfill site was used, but it became unavailable when the site closed enforcing the use of other leachates for the remainder of the investigation. Leachates from Marianhill, Bisarsar Road and Bul-Bul Drive were treated simultaneously in duplicate operating the six-chambered bioreactor in the batchtype configuration. The highest COD removal efficiency (49 %) was obtained in the chambers treating the Bul-Bul Drive leachate, which was therefore used for further investigations. This leachate had the highest BOD:COD ratio and was therefore expected to be the most suited to biological remediation. The bioreactor performed best when plastic bioballs were used as biofilm support matrix with a relatively low level of aeration, although the uncomposted form of pine bark was used initially as the support matrix because it is inexpensive and readily available in South Africa. However, although satisfactory COD reduction (30 – 61 %) and ammonia removal (87 – 98 %) was achieved when the Umlazi leachate was treated, the possibility of compounds leaching out of the bark and affecting the quality of the treated leachate was a concern. Also, pine bark would be prone to mechanical degradation in a full scale operation. Of the other solid support matrices tested using the Bul-Bul leachate, COD removal efficiencies were superior with plastic bioballs (60 %) than with pine bark chips (29 %). The former therefore became the preferred biofilm support matrix. Aeration level did influence bioremediation of the Umlazi landfill leachate since those chambers aerated with an aquarium pump (0.05 – 0.1 litres air/litre leachate/min; 60 % COD removal) performed better than those aerated with a blower (0.6 -0.7 litres air/litre leachate/min; 42 % COD removal) and those that remained unaerated (44 % COD removal). Recycle rate did not significantly affect bioremediation, but the performance of the system was higher when operated in batch mode (up to 60 % influent COD removal), rather than in continuous flow-through (cascade) mode when only 37 % of the influent COD in the Bul-Bul leachate was removed. Under the latter conditions, most of the reduction occurred in the first four chambers and very little biodegradation occurred in the final two chambers. The cascade-mode will require some refinement to enhance the COD removal efficiencies achieved. However, it did eliminate 89 % of the BOD present in the raw leachate, producing a treated effluent with a consistent BOD:COD ratio of 0.05. The COD removal efficiencies achieved covered a wide range from a minimum of 23 % with Marianhill leachate to a maximum of 63 % with leachate from Bul-Bul Drive. These results are comparable with many of those reported by other authors treating landfill leachate. Up to 98 % of the ammonia was removed when the Umlazi leachate was treated. However, ammonia removal from the other leachates tested was erratic. Although the treated leachate from this system could not be released into the environment without further remediation, the reduction in concentration of pollutants would allow its return to the local water supply via a wastewater treatment plant. This was achieved without temperature and pH regulation or addition of extraneous nutrient sources. A cost-effective, low maintenance technology such as this one would be a useful tool for the treatment of effluents such as landfill leachate in countries like South Africa where although water conservation is urgently required, resources for highly sophisticated effluent remediation are often not readily available. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.

Page generated in 0.0455 seconds