Spelling suggestions: "subject:"bioreceptors"" "subject:"bioreceptores""
1 |
Development of Nanomechanical Sensors for Environmental Contaminate Screening Using Protein Functionalized MicrocantileversHill, Kasey L 01 May 2010 (has links)
The development of real time, label-free biosensors based on ligand-induced nanomechanical responses of microcantilevers (MCs) allows for sensitive and selective detection. High sensitivity is afforded by the MCs small dimensions. Immobilizing biomolecular recognition phases imparts selectivity from bioaffinity interactions. Biological sensors on a MC platform utilize various proteins, such as antibodies and nuclear receptors, which can be used to detect and screen for potential environmental contaminants.
The interaction between contaminants and immobilized receptors induces an apparent surface stress that leads to static bending of the MC, which is monitored by an optical beam bending technique. Biofunctionalized MCs can provide high sensitivity and selectivity on a relatively inexpensive platform that requires small amounts of analyte. The goal of this research is to develop and optimize MCs as biosensors to detect low concentrations of contaminants.
Initially, the research utilized specific receptors and antibodies to detect and screen for contaminants that are deemed endocrine disrupting chemicals (EDCs). Immobilizing estrogen receptors and specific antibodies on the MC surface may provide information on the ever expanding list of EDCs, along with fundamental endocrine studies.
Then, the MC surface was morphologically and chemically optimized. This optimization included the thickness and metal ratio of the dealloyed surface. The concentration, reaction time, and pH of chemical immobilization reagents, which include aminoethanethiol and glutaraldehyde, were optimized by using an anti-body test system. Antibody and protein functionalization conditions, which are incubation time and concentration, were optimized using the anti-immunoglobulin G (anti-IgG) receptor: IgG and an anti-biotin:biotin test systems. The optimized immobilization conditions were applied to the detection of thyroid disrupting chemicals (TDCs) using MCs functionalized with the transport protein thyroxine-binding globulin.
The final project involved developing a nanomechanical transducer to study xenobiotic and EDC interactions with the bioreceptor PXR’s ligand binding domain (LBD). The combination of immobilized LBD PXR with a nanostructured microcantilever (MC) platform allows for the study of ligand interaction with the receptor’s binding domain. PXR shows real-time, reversible responses when exposed to specific pharmaceutical, EDC, and xenobiotic ligands. Three binding interactions that involve EDCs are tested, which include phthalic acid, nonylphenol, and bisphenol A, with PXR.
|
2 |
Solid-state biosensors and field-effect transistor devices based on organic semiconductors / Biossensores do estado sólido e dispositivos transistores de efeito de campo fabricados com semicondutores orgânicosMello, Hugo José Nogueira Pedroza Dias 15 March 2019 (has links)
Biosensors based on solid-state field-effect transistor as transducer stage using organic semiconducting materials as sensing stage have been developed. Polyaniline thin films galvanostatic electrodeposited were fabricated. Varied electrodeposition parameters were tested, such as deposited charge, current density, deposition time and monomer concentration, besides the tests of a polymeric blend composed of polyaniline and polypyrrole and tested as pH potentiometric extended gate field-effect transistor sensor. Then, biosensors were produced using the one-step electrochemical immobilization process to obtain thin polyaniline films with entrapped glucose oxidase and urease enzymes, to detection of glucose and urea, respectively. The optimized films presented sensitivity, linearity and detection range to glucose of 14.6 ± 0.4 mV/decade, 99.8 % and from 10-4 mol/L to 10-1 mol/L. Two different biosensors were produced based on the enzymatic catalysis of urea with selectivity to ammonium or hydroxyl ions. For ammonium ion selective films, the sensor presented sensitivity, linearity and detection range of 14.7 ± 0.9 mV/decade, 98.2 % and from 10-5 mol/L to 10-1 mol/L. For the hydroxyl ion selective film, the same parameters were 7.4 ± 0.5 mV/decade, 98.1 % and from 10-5 mol/L to 10-1 mol/L. The same functionalized polyaniline thin films were used in optical and conductometric biosensors due to the polyelectrochromic characteristic of the material. Improvement of the field-effect system was possible with the multimodal array of enzymatic biosensor. The device was built using different enzymatic sensing stages connected to the extended gate field effect transistor. The system decreased the time needed to make distinct measurements, showed good response to the variation in solutions pH, to the presence of the reference film and to injection of target analyte in solution in real time measurement. The electrolyte gated organic field-effect transistor based on a polythiophene organic semiconducting layer was developed. A modular enzymatic biosensor for glucose and urea, with a linear response in the range between 10-6 and 10-3 mol/L, was achieved. This biosensor relies on the immobilization the enzymes on gold rods, used as gate electrodes in the devices. The use of the bioreceptors proved to be selective and cross-selective in the devices. The possibility of exchanging the modified gate electrode to detect specific analytes using the same device system allows the modular sensor to be reused and applied for a broad range of applications. Which is the case for explosives molecules, TNT and DNT, biosensor fabricated in the same terms. This biosensor relies on the immobilization of specific binding peptides for TNT and DNT on the gold rod / Biossensores do estado sólido baseados em transistores de efeito de campo como estágio transdutor fabricados com materiais semicondutores orgânicos como estágio de detecção foram desenvolvidos. Filmes finos de polianilina eletrodepositados galvanostaticamente foram fabricados. Parâmetros de eletrodeposição foram testados, como carga depositada, densidade de corrente, tempo de deposição e concentração de monômero, além de testes com compósito polimérico de polianilina e polipirrol e aplicados como sensor de transistor de efeito de campo de porta estendida potenciométrica de pH. Em seguida, os biossensores foram produzidos utilizando-se o processo de imobilização eletroquímica conjunta para obtenção de filmes finos de polianilina com enzimas glicose oxidase e urease imobilizadas, para detecção de glicose e ureia, respectivamente. Os filmes otimizados apresentaram sensibilidade, linearidade e faixa de detecção para glicose de 14,6 ± 0,4 mV/década, 99,8% e de 10-4 a 10-1 mol/L. Dois biossensores diferentes foram produzidos a partir da catálise enzimática da ureia com seletividade para íons amônio ou hidroxila. Para filmes seletivos ao íon amônio, o sensor apresentou sensibilidade, linearidade e faixa de detecção de 14,7 ± 0,9 mV/década, 98,2% e de 10-5 a 10-1 mol/L. Para o filme seletivo ao íon hidroxila, os mesmos parâmetros foram 7,4 ± 0,5 mV/década, 98,1% e de 10-5 a 10-1 mol/L. Os mesmos filmes finos de polianilina funcionalizados foram utilizados em biossensores ópticos e condutométricos devido à característica polieletrocromática do material. A melhoria do sistema foi possível com o arranjo multimodal do biossensor enzimático. O dispositivo foi construído usando diferentes estágios de detecção enzimática conectados ao transistor de efeito de campo de porta estendido. O sistema diminuiu o tempo necessário para fazer medições distintas, mostrou boa resposta à variação no pH da solução, à presença do filme de referência e à injeção do analito alvo em solução na medição em tempo real. Foi desenvolvido o transistor orgânico de efeito de campo com porta eletrolítica, baseado em uma camada semicondutora orgânica de politiofeno. Um biossensor enzimático modular para glicose e ureia, com uma resposta linear na faixa entre 10-6 e 10-3 mol/L, foi alcançado. Este biossensor depende da imobilização das enzimas no eletrodo ouro utilizado como porta nos dispositivos. O uso dos bioreceptores mostrou-se seletivo nos dispositivos. A possibilidade de trocar o eletrodo de porta modificada para detectar analitos específicos usando o mesmo sistema de dispositivos permite que o sensor modular seja reutilizado e com diversas aplicações. Sendo este o caso de moléculas de explosivos, TNT e DNT, com biossensor fabricado nos mesmos termos. Este biossensor depende da imobilização de peptídeos de ligação específica para TNT e DNT no eletrodo de ouro
|
Page generated in 0.0281 seconds