• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2053
  • 34
  • 25
  • 24
  • 24
  • 22
  • 22
  • 16
  • 11
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 2142
  • 711
  • 220
  • 177
  • 156
  • 119
  • 116
  • 112
  • 100
  • 97
  • 95
  • 91
  • 87
  • 86
  • 85
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Metabolismo di oligosaccaridi prebiotici in Bifidobacterium per il potenziale sviluppo di nuovi prodotti alimentari funzionali

Zanoni, Simona <1979> 05 May 2008 (has links)
The growth and the metabolism of Bifidobacterium adolescentis MB 239 fermenting GOS, lactose, galactose, and glucose were investigated. An unstructerd unsegregated model for growth of B. adolescentis MB 239 in batch cultures was developed and kinetic parameters were calculated with a Matlab algorithm. Galactose was the best carbon source; lactose and GOS led to lower growth rate and cellular yield, but glucose was the poorest carbon source. Lactate, acetate and ethanol yields allowed calculation of the carbon fluxes toward fermentation products. Similar distribution between 3- and 2-carbon products was observed on all the carbohydrates (45 and 55%, respectively), but ethanol production was higher on glucose than on GOS, lactose and galactose, in decreasing order. Based on the stoichiometry of the fructose 6-phosphate shunt and on the carbon distribution among the products, ATP yield was calculated on the different carbohydrates. ATP yield was the highest on galactose, while it was 5, 8, and 25% lower on lactose, GOS, and glucose, respectively. Therefore, a correspondance among ethanol production, low ATP yields, and low biomass production was established demonstrating that carbohydrate preferences may result from different sorting of carbon fluxes through the fermentative pathway. During GOS fermentation, stringent selectivity based on the degree of polymerization was exhibited, since lactose and the trisaccharide were first to be consumed, and a delay was observed until longer oligosaccharides were utilized. Throughout the growth on both lactose and GOS, galactose accumulated in the cultural broth, suggesting that β-(1-4) galactosides can be hydrolysed before they are taken up. The physiology of Bifidobacterium adolescentis MB 239 toward xylooligosaccharides (XOS) was also studied and our attention was focused on an extracellular glycosyl-hydrolase (β-Xylosidase) expressed by a culture of B. adolescentis grown on XOS as sole carbon source. The extracellular enzyme was purified from the the supernatant, which was dialyzed and concentrated by ultrafiltration. A two steps purification protocol was developed: the sample was loaded on a Mono-Q anion exchange chromatography and then, the active fractions were pooled and β-Xylosidase was purified by gel filtration chromatography on a Superdex-75. The enzyme was characterized in many aspects. β- Xylosidase was an homo-tetramer of 160 kDa as native molecular mass; it was a termostable enzyme with an optimum of temperature at 53 °C and an optimum of pH of 6.0. The kinetics parameter were calculated: km = 4.36 mM, Vmax = 0.93 mM/min. The substrate specificity with different di-, oligo- and polysaccharides was tested. The reactions were carried out overnight at pH 7 and at the optimum of temperature and the carbohydrates hydrolysis were analyzed by thin layer chromatography (TLC). Only glycosyl-hydrolase activities on XOS and on xylan were detected, whereas sucrose, lactose, cellobiose, maltose and raffinose were not hydrolyzed. It’s clearly shown that β-Xylosidase activity was higher than the Xylanase one. These studies on the carbohydrate preference of a strain of Bifidobacterium underlined the importance of the affinity between probiotics and prebiotics. On the basis of this concept, together with Barilla G&R f.lli SpA, we studied the possibility to develop a functional food containing a synbiotic. Three probiotic strains Lactobacillus plantarum BAR 10, Streptococcus thermophilus BAR 20, and Bifidobacterium lactis BAR 30 were studied to assess their suitability for utilization in synbiotic products on the basis of antioxidative activity, glutathione production, acid and bile tolerance, carbohydrates fermentation and viability in food matrices. Bile and human gastric juice resistance was tested in vitro to estimate the transit tolerance in the upper gastrointestinal tract. B. lactis and L. plantarum were more acid tolerant than S. thermophilus. All the strains resisted to bile. The growth kinetics on 13 prebiotic carbohydrates were determined. Galactooligosaccharides and fructo-oligosaccharides were successfully utilized by all the strains and could be considered the most appropriate prebiotics to be used in effective synbiotic formulations. The vitality of the three strains inoculated in different food matrices and maintained at room temperature was studied. The best survival of Lactobacillus plantarum BAR 10, Streptococcus thermophilus BAR 20, and Bifidobacterium lactis BAR 30 was found in food chocolate matrices. Then an in vivo clinical trial was carried out for 20 healthy volunteers. The increase in faecal bifidobacteria and lactobacilli populations and the efficacy of the pre-prototype was promising for the future develop of potential commercial products.
382

Sviluppo di processi biotecnologici per la produzione e il recupero di vanillina

Sciubba, Luigi <1981> 29 May 2009 (has links)
No description available.
383

Adattamento e acclimatazione a diverse temperature di lieviti psicrofili obbligati e facoltativi e di lieviti mesofili. Studio della produzione di acidi grassi polinsaturi omega-3 e omega-6 per via fermentativa.

Cordisco, Lisa <1979> 29 May 2009 (has links)
Adaptation and acclimation to different temperatures of obligate psychrophilic, facultative psychrophilic and mesophilic yeasts. Production of ω-3 and ω-6 polyunsaturated fatty acids by fermentative way. Obligate psychrophilic, facultative psychrophilic and mesophilic yeasts were cultured in a carbon rich medium at different temperatures to investigate if growth parameters, lipid accumulation and fatty acid composition were adaptive and/or acclimatory responses. Acclimation of facultative psychrophiles and mesophiles to lower temperature negatively affected their specific growth rate. Obligate psychrophiles exhibited the highest biomass yield (YX/S), followed by facultative psychrophiles, then by mesophiles. The growth temperature did not influence the YX/S of facultative psychrophiles and mesophiles. Acclimation to lower temperature caused the increase in lipid yield (YL/X) in mesophilic yeasts, but did not affect YL/X in facultative psychrophiles. Similar YL/X were found in both facultative and obligated psychrophiles, suggesting that lipid accumulation is not a distinctive character of adaptation to permanently cold environments. The extent of unsaturation of fatty acids was one major adaptive feature of the yeasts which colonize permanently cold ecosystems. Remarkable amounts of α-linolenic acid were found in obligate psychrophiles at the expenses of linoleic acid, whereas it was generally scarce or absent in all the others strains. Increased unsaturation of fatty acids was also an acclimatory response of mesophiles and facultative psychrophiles to lower temperature. It’s well known that omega-3 polyunsaturated fatty acids (PUFAs) display a variety of beneficial effects on various organ systems and diseases, therefore a process for the microbial production of omega-3 PUFAs would be of great interest. This work sought also to investigate if one of the better psychrophilic yeast, Rhodotorula glacialis DBVPG 4785, stimulated by acclamatory responses, produced omega-3 PUFAs. In fact, the adaptation of psychrophilic yeasts to cold niches is related to the production of higher amounts of lipids and to increased unsaturation degree of fatty acids, presumably to maintain membrane fluidity and functionality at low temperatures. Bioreactor fermentations of Rhodotorula glacialis DBVPG 4785 were carried out at 25, 20, 15, 10, 5, 0, and -3°C in a complex medium with high C:N ratio for 15 days. High biomass production was attained at all the temperatures with a similar biomass/glucose yield (YXS), between 0.40 and 0.45, but the specific growth rate of the strain decreased as the temperature diminished. The coefficients YL/X have been measured between a minimum of 0.50 to a maximum of 0.67, but it was not possible to show a clear effect of temperature. Similarly, the coefficient YL/S ranges from a minimum of 0.22 to a maximum of 0.28: again, it does not appear to be any significant changes due to temperature. Among omega-3 PUFAs, only α-linolenic acid (ALA, 18:3n-3) was found at temperatures below to 0°C, while, it’s remarkable, that the worthy arachidonic acid (C20:4,n-6), stearidonic acid (C20:4,n-3) C22:0 and docosahexaenoic acid (C22:6n-3) were produced only at the late exponential phase and the stationary phase of batch fermentations at 0 and -3°C. The docosahexaenoic acid (DHA) is a beneficial omega-3 PUFA that is usually found in fatty fish and fish oils. The results herein reported improve the knowledge about the responses which enable psychrophilic yeasts to cope with cold and may support exploitation of these strains as a new resource for biotechnological applications.
384

Studio della subunità epsilon della DNA polimerasi III di Escherichia coli: stabilità e interazione con la subunità polimerasica

Bressanin, Daniela <1978> 29 May 2009 (has links)
Faithful replication of DNA from one generation to the next is crucial for long-term species survival. Genomic integrity in prokaryotes, archaea and eukaryotes is dependent on efficient and accurate catalysis by multiple DNA polymerases. Escherichia coli possesses five known DNA polymerases (Pol). DNA polymerase III holoenzyme is the major replicative polymerase of the Escherichia coli chromosome (Kornberg, 1982). This enzyme contains two Pol III cores that are held together by a t dimer (Studwell-Vaughan and O’Donnell, 1991). The core is composed of three different proteins named α-, ε- and θ-subunit. The α-subunit, encoded by dnaE, contains the catalytic site for DNA polymerisation (Maki and Kornberg, 1985), the ε-subunit, encoded by dnaQ, contains the 3′→5′ proofreading exonuclease (Scheuermann, et al., 1983) and the θ-subunit, encoded by hole, that has no catalytic activity (Studwell-Vaughan, and O'Donnell, 1983). The three-subunit α–ε–θ DNA pol III complex is the minimal active polymerase form purified from the DNA pol III holoenzyme complex; these three polypeptides are tightly associated in the core (McHenry and Crow, 1979) Despite a wealth of data concerning the properties of DNA polymerase III in vitro, little information is available on the assembly in vivo of this complex enzyme. In this study it is shown that the C-terminal region of the proofreading subunit is labile and that the ClpP protease and the molecular chaperones GroL and DnaK control the overall concentration in vivo of ε. Two α-helices (comprising the residues E311-M335 and G339-D353, respectively) of the N-terminal region of the polymerase subunit were shown to be essential for the binding to ε. These informations could be utilized to produce a conditional mutator strain in which proofreading activity would be titrated by a a variant that can only bind e and that is polymerase-deficient. In this way the replication of DNA made by DNA Pol-III holoenzyme would accordingly become error-prone.
385

Physiology and Biotechnology of the Hydrogen Production with the Green Microalga Chlamydomonas reinhardtii

Scoma, Alberto <1980> 25 March 2010 (has links)
The hydrogen production in the green microalga Chlamydomonas reinhardtii was evaluated by means of a detailed physiological and biotechnological study. First, a wide screening of the hydrogen productivity was done on 22 strains of C. reinhardtii, most of which mutated at the level of the D1 protein. The screening revealed for the first time that mutations upon the D1 protein may result on an increased hydrogen production. Indeed, productions ranged between 0 and more than 500 mL hydrogen per liter of culture (Torzillo, Scoma et al., 2007a), the highest producer (L159I-N230Y) being up to 5 times more performant than the strain cc124 widely adopted in literature (Torzillo, Scoma, et al., 2007b). Improved productivities by D1 protein mutants were generally a result of high photosynthetic capabilities counteracted by high respiration rates. Optimization of culture conditions were addressed according to the results of the physiological study of selected strains. In a first step, the photobioreactor (PBR) was provided with a multiple-impeller stirring system designed, developed and tested by us, using the strain cc124. It was found that the impeller system was effectively able to induce regular and turbulent mixing, which led to improved photosynthetic yields by means of light/dark cycles. Moreover, improved mixing regime sustained higher respiration rates, compared to what obtained with the commonly used stir bar mixing system. As far as the results of the initial screening phase are considered, both these factors are relevant to the hydrogen production. Indeed, very high energy conversion efficiencies (light to hydrogen) were obtained with the impeller device, prooving that our PBR was a good tool to both improve and study photosynthetic processes (Giannelli, Scoma et al., 2009). In the second part of the optimization, an accurate analysis of all the positive features of the high performance strain L159I-N230Y pointed out, respect to the WT, it has: (1) a larger chlorophyll optical cross-section; (2) a higher electron transfer rate by PSII; (3) a higher respiration rate; (4) a higher efficiency of utilization of the hydrogenase; (5) a higher starch synthesis capability; (6) a higher per cell D1 protein amount; (7) a higher zeaxanthin synthesis capability (Torzillo, Scoma et al., 2009). These information were gathered with those obtained with the impeller mixing device to find out the best culture conditions to optimize productivity with strain L159I-N230Y. The main aim was to sustain as long as possible the direct PSII contribution, which leads to hydrogen production without net CO2 release. Finally, an outstanding maximum rate of 11.1 ± 1.0 mL/L/h was reached and maintained for 21.8 ± 7.7 hours, when the effective photochemical efficiency of PSII (ΔF/F'm) underwent a last drop to zero. If expressed in terms of chl (24.0 ± 2.2 µmoles/mg chl/h), these rates of production are 4 times higher than what reported in literature to date (Scoma et al., 2010a submitted). DCMU addition experiments confirmed the key role played by PSII in sustaining such rates. On the other hand, experiments carried out in similar conditions with the control strain cc124 showed an improved final productivity, but no constant PSII direct contribution. These results showed that, aside from fermentation processes, if proper conditions are supplied to selected strains, hydrogen production can be substantially enhanced by means of biophotolysis. A last study on the physiology of the process was carried out with the mutant IL. Although able to express and very efficiently utilize the hydrogenase enzyme, this strain was unable to produce hydrogen when sulfur deprived. However, in a specific set of experiments this goal was finally reached, pointing out that other than (1) a state 1-2 transition of the photosynthetic apparatus, (2) starch storage and (3) anaerobiosis establishment, a timely transition to the hydrogen production is also needed in sulfur deprivation to induce the process before energy reserves are driven towards other processes necessary for the survival of the cell. This information turned out to be crucial when moving outdoor for the hydrogen production in a tubular horizontal 50-liter PBR under sunlight radiation. First attempts with laboratory grown cultures showed that no hydrogen production under sulfur starvation can be induced if a previous adaptation of the culture is not pursued outdoor. Indeed, in these conditions the hydrogen production under direct sunlight radiation with C. reinhardtii was finally achieved for the first time in literature (Scoma et al., 2010b submitted). Experiments were also made to optimize productivity in outdoor conditions, with respect to the light dilution within the culture layers. Finally, a brief study of the anaerobic metabolism of C. reinhardtii during hydrogen oxidation has been carried out. This study represents a good integration to the understanding of the complex interplay of pathways that operate concomitantly in this microalga.
386

Molecular characterization of the human gut microbiota: the effect of aging

Biagi, Elena <1982> 25 March 2010 (has links)
Age-related physiological changes in the gastrointestinal tract, as well as modification in lifestyle, nutritional behaviour, and functionality of the host immune system, inevitably affect the gut microbiota. The study presented here is focused on the application and comparison of two different microarray approaches for the characterization of the human gut microbiota, the HITChip and the HTF-Microb.Array, with particular attention to the effects of the aging process on the composition of this ecosystem. By using the Human Intestinal Tract Chip (HITChip), recently developed at the Wageningen University, The Netherland, we explored the age-related changes of gut microbiota during the whole adult lifespan, from young adults, through elderly to centenarians. We observed that the microbial composition and diversity of the gut ecosystem of young adults and seventy-years old people is highly similar but differs significantly from that of the centenarians. After 100 years of symbiotic association with the human host, the microbiota is characterized by a rearrangement in the Firmicutes population and an enrichment of facultative anaerobes. The presence of such a compromised microbiota in the centenarians is associated with an increased inflammation status, also known as inflamm-aging, as determined by a range of peripheral blood inflammatory markers. In parallel, we overtook the development of our own phylogenetic microarray with a lower number of targets, aiming the description of the human gut microbiota structure at high taxonomic level. The resulting chip was called High Taxonomic level Fingerprinting Microbiota Array (HTF-Microb.Array), and was based on the Ligase Detection Reaction (LDR) technology, which allowed us to develop a fast and sensitive tool for the fingerprint of the human gut microbiota in terms of presence/absence of the principal groups. The validation on artificial DNA mixes, as well as the pilot study involving eight healthy young adults, demonstrated that the HTF-Microb.Array can be used to successfully characterize the human gut microbiota, allowing us to obtain results which are in approximate accordance with the most recent characterizations. Conversely, the evaluation of the relative abundance of the target groups on the bases of the relative fluorescence intensity probes response still has some hindrances, as demonstrated by comparing the HTF.Microb.Array and HITChip high taxonomic level fingerprints of the same centenarians.
387

Cross-Talk tra Bifidobacterium e intestino umano: impatto sulle attività health promoting

Dipalo, Samuele Ciro Federico <1979> 25 March 2010 (has links)
Bifidobacteria constitute up to 3% of the total microbiota and represent one of the most important healthpromoting bacterial groups of the human intestinal microflora. The presence of Bifidobacterium in the human gastrointestinal tract has been directly related to several health-promoting activities; however, to date, no information about the specific mechanisms of interaction with the host is available. The first health-promoting activities studied in these job was the oxalate-degrading activity. Oxalic acid occurs extensively in nature and plays diverse roles, especially in pathological processes. Due to its highly oxidizing effects, hyper absorption or abnormal synthesis of oxalate can cause serious acute disorders in mammals and be lethal in extreme cases. Intestinal oxalate-degrading bacteria could therefore be pivotal in maintaining oxalate homeostasis, reducing the risk of kidney stone development. In this study, the oxalate-degrading activity of 14 bifidobacterial strains was measured by a capillary electrophoresis technique. The oxc gene, encoding oxalyl-CoA decarboxylase, a key enzyme in oxalate catabolism, was isolated by probing a genomic library of B. animalis subsp. lactis BI07, which was one of the most active strains in the preliminary screening. The genetic and transcriptional organization of oxc flanking regions was determined, unravelling the presence of other two independently transcribed open reading frames, potentially responsible for B. animalis subsp. lactis ability to degrade oxalate. Transcriptional analysis, using real-time quantitative reverse transcription PCR, revealed that these genes were highly induced in cells first adapted to subinhibitory concentrations of oxalate and then exposed to pH 4.5. Acidic conditions were also a prerequisite for a significant oxalate degradation rate, which dramatically increased in oxalate pre-adapted cells, as demonstrated in fermentation experiments with different pH-controlled batch cultures. These findings provide new insights in the characterization of oxalate-degrading probiotic bacteria and may support the use of B. animalis subsp. lactis as a promising adjunct for the prophylaxis and management of oxalate-related kidney disease. In order to provide some insight into the molecular mechanisms involved in the interaction with the host, in the second part of the job, we investigated whether Bifidobacterium was able to capture human plasminogen on the cell surface. The binding of human plasminogen to Bifidobacterium was dependent on lysine residues of surface protein receptors. By using a proteomic approach, we identified six putative plasminogen-binding proteins in the cell wall fraction of three strain of Bifidobacterium. The data suggest that plasminogen binding to Bifidobactrium is due to the concerted action of a number of proteins located on the bacterial cell surface, some of which are highly conserved cytoplasmic proteins which have other essential cellular functions. Our findings represent a step forward in understanding the mechanisms involved in the Bifidobacterium-host interaction. In these job w studied a new approach based on to MALDI-TOF MS to measure the interaction between entire bacterial cells and host molecular target. MALDI-TOF (Matrix Assisted Laser Desorption Ionization-Time of Flight)—mass spectrometry has been applied, for the first time, in the investigation of whole Bifidobacterium cells-host target proteins interaction. In particular, by means of this technique, a dose dependent human plasminogen-binding activity has been shown for Bifidobacterium. The involvement of lysine binding sites on the bacterial cell surface has been proved. The obtained result was found to be consistent with that from well-established standard methodologies, thus the proposed MALDI-TOF approach has the potential to enter as a fast alternative method in the field of biorecognition studies involving in bacterial cells and proteins of human origin.
388

Dealogenazione riduttiva dei policlorobifenili (PCB) in sedimenti anaerobici marini della laguna di Venezia: arricchimento e identificazione dei microrganismi dealogenanti

Negroni, Andrea <1981> 25 March 2010 (has links)
I policlorobifenili (PCB) sono inquinanti tossici e fortemente recalcitranti che contaminano suoli e sedimenti di acqua dolce e marini. Le tecnologie attualmente impiegate per la loro rimozione (dragaggio e trattamento chimoco-fisico o conferimento in discarica) sono molto costose, poco efficaci o ad alto impatto ambientale. L’individuazione di strategie alternative, di natura biologica, consentirebbe lo sviluppo di un processo alternativo più sostenibile. Nel processo di declorurazione riduttiva i congeneri di PCB a più alto grado di clorurazione, che sono i più tossici, recalcitranti e maggiormente tendenti al bioaccumulo, vengono utilizzati da alcuni microrganismi anaerobici come accettori finali di elettroni nella catena respiratoria e bioconvertiti in congeneri a minor grado di clorurazione, meno pericolosi, che possono essere mineralizzati da parte di batteri aerobi. La declorurazione riduttiva dei PCB è stata spesso studiata in colture anaerobiche di arricchimento in terreno minerale ottenute a partire da sedimenti di acqua dolce; questi studi hanno permesso di dimostrare che batteri del phylum dei Chloroflexi e appartenenti al genere Dehalococcoides o filogeneticamente facenti parte del gruppo dei Dehalococcoides-like sono i decloruranti. Sono tuttavia scarse le informazioni riguardanti l'occorrenza della declorurazione dei PCB in ambienti marini, nei quali l'alta salinità e concentrazione di solfati influenzano diversamente l'evoluzione delle popolazioni microbiche. In sedimenti contaminati della laguna di Venezia è stata osservata declorurazione sia dei PCB preesistenti che di congeneri esogeni; questi studi hanno permesso l'ottenimento di colture di arricchimento fortemente attive nei confronti di 5 congeneri di PCB coplanari. In questa tesi, a partire dalle colture capaci di declorurare i PCB coplanari, sono stati allestiti nuovi passaggi di arricchimento su Aroclor®1254, una miscela di PCB più complessa e che meglio rappresenta la contaminazione ambientale. Le colture sono state allestite come microcosmi anaerobici in fase slurry, preparati risospendendo il sedimento nell'acqua superficiale, ricreando in tal modo in laboratorio le stesse condizioni biogeochimiche presenti in situ; gli slurry sterili sono stati inoculati per avviare le colture. Per favorire la crescita dei microrganismi decloruranti e stimolare così la decloruraazione dei PCB sono stati aggiunti inibitori selettivi di metanogeni (Bromoetansulfonato o BES) e solfato-riduttori (molibdato), sono state fornite fonti di carbonio ed energia (eD), quali acidi grassi a corta catena e idrogeno, utilizzate di batteri decloruranti noti, e per semplificare la comunità microbica sono stati aggiunti antibiotici cui batteri decloruranti del genere Dehalococcoides sono resistenti. Con questo approccio sono stati allestiti passaggi di arricchimento successivi e le popolazioni microbiche delle colture sono state caratterizzate con analisi molecolari di fingerprinting (DGGE). Fin dal primo passaggio di arricchimento nei microcosmi non ammendati ha avuto luogo un'estesa declorurazione dell'Aroclor®1254; nei successivi passaggi si è notato un incremento della velocità del processo e la scomparsa della fase di latenza, mentre la stessa stereoselettività è stata mantenuta a riprova dell’arricchimento degli stessi microrganismi decloruranti. Le velocità di declorurazione ottenute sono molto alte se confrontate con quelle osservate in colture anaerobiche addizionate della stessa miscela descritte in letteratura. L'aggiunta di BES o molibdato ha bloccato la declorurazione dei PCB ma in presenza di BES è stata riscontrata attività dealogenante nei confronti di questa molecola. La supplementazione di fonti di energia e di carbonio ha stimolato la metanogenesi e i processi fermentativi ma non ha avuto effetti sulla declorurazione. Ampicillina e vancomicina hanno incrementato la velocità di declorurazione quando aggiunte singolarmente, insieme o in combinazione con eD. E' stato però anche dimostrato che la declorurazione dei PCB è indipendente sia dalla metanogenesi che dalla solfato-riduzione. Queste attività respiratorie hanno avuto velocità ed estensioni diverse in presenza della medesima attività declorurante; in particolare la metanogenesi è stata rilevata solo in dipendenza dall’aggiunta di eD alle colture e la solfato-riduzione è stata inibita dall’ampicillina in microcosmi nei quali un’estesa declorurazione dei PCB è stata osservata. La caratterizzazione delle popolazioni microbiche, condotte mediante analisi molecolari di fingerprinting (DGGE) hanno permesso di descrivere le popolazioni batteriche delle diverse colture come complesse comunità microbiche e di rilevare in tutte le colture decloruranti la presenza di una banda che l’analisi filogenetica ha ascritto al batterio m-1, un noto batterio declorurante in grado di dealogenare un congenere di PCB in colture di arricchimento ottenute da sedimenti marini appartenente al gruppo dei Dehalococcoides-like. Per verificare se la crescita di questo microrganismo sia legata alla presenza dei PCB, l'ultimo passaggio di arricchimento ha previsto l’allestimento di microcosmi addizionati di Aroclor®1254 e altri analoghi privi di PCB. Il batterio m-1 è stato rilevato in tutti i microcosmi addizionati di PCB ma non è mai stato rilevato in quelli in cui i PCB non erano presenti; la presenza di nessun altro batterio né alcun archebatterio è subordinata all’aggiunta dei PCB. E in questo modo stato dimostrato che la presenza di m-1 è dipendente dai PCB e si ritiene quindi che m-1 sia il declorurante in grado di crescere utilizzando i PCB come accettori di elettroni nella catena respiratoria anche in condizioni biogeochimiche tipiche degli habitat marini. In tutte le colture dell'ultimo passaggio di arricchimento è stata anche condotta una reazione di PCR mirata alla rilevazione di geni per dealogenasi riduttive, l’enzima chiave coinvolto nei processi di dealogenazione. E’ stato ottenuto un amplicone di lughezza analoga a quelle di tutte le dealogenasi note in tutte le colture decloruranti ma un tale amplificato non è mai stato ottenuto da colture non addizionate di PCB. La dealogenasi ha lo stesso comportamento di m-1, essendo stata trovata come questo sempre e solo in presenza di PCB e di declorurazione riduttiva. La sequenza di questa dealogenasi è diversa da tutte quelle note sia in termini di sequenza nucleotidica che aminoacidica, pur presentando due ORF con le stesse caratteristiche e domini presenti nelle dealogenasi note. Poiché la presenza della dealogenasi rilevata nelle colture dipende esclusivamente dall’aggiunta di PCB e dall’osservazione della declorurazione riduttiva e considerato che gran parte delle differenze genetiche è concentrata nella parte di sequenza che si pensa determini la specificità di substrato, si ritiene che la dealogenasi identificata sia specifica per i PCB. La ricerca è stata condotta in microcosmi che hanno ricreato fedelmente le condizioni biogeochimiche presenti in situ e ha quindi permesso di rendere conto del reale potenziale declorurante della microflora indigena dei sedimenti della laguna di Venezia. Le analisi molecolari condotte hanno permesso di identificare per la prima volta un batterio responsabile della declorurazione dei PCB in sedimenti marini (il batterio m-1) e una nuova dealogenasi specifica per PCB. L'identificazione del microrganismo declorurante permette di aprire la strada allo sviluppo di tecnologie di bioremediation mirata e il gene della dealogenasi potrà essere utilizzato come marker molecolare per determinare il reale potenziale di declorurazione di miscele complesse di PCB in sedimenti marini.
389

Intensificazione di processi biologici per la Bioremediation aerobica di suoli contaminati

Di Toro, Sara <1977> 28 June 2011 (has links)
Enzyveba, a partially characterized complex consortium of not-adapted microorganisms developed through prolonged stabilization of organic wastes, was found to markedly intensify the aerobic remediation of aged PAH- and PCB-contaminated soil by acting as a source of exogenous specialized microorganisms and nutrients. Thus, Enzyveba was tested in the bioremediation of Diesel (G1) and HiQ Diesel (G2) contaminated soils under aerobic slurry-phase conditions by means of a chemical, microbiological, ecotoxicological integrated analytical procedure. The addition of Enzyveba resulted in a higher availability of cultivable specialized bacteria and fungi but this resulted in a slight intensification of soil remediation, probably because of the high content of nutrients and specialized microorganisms of the soil. In many cases, the biotreatability of soils impacted by diesel fuel is limited by their poor content of autochthonous pollutant-degrading microorganisms. Thus, bioaugmentation with stable and reproducible cultures with the required broad substrate specificity might be the solution for a successful remediation. Two microbial consortia, ENZ-G1 and ENZ-G2, were enriched from Enzyveba on G1 and G2. Both consortia consist of a similar composition of bacterial and fungal species. They exhibited a comparable and significant biodegradation capability by removing about 90% of 1 g/l of diesel fuel under liquid culture conditions. Given their remarkable biodegradation potential, richness of quite diverse microbes, stability and resistance after cryopreservation at -20 °C for several months, both consortia appear very interesting candidates for bioaugmentation on site. The mycoflora of a soil historically contaminated by high concentration of PCBs was characterised before, at the beginning and at the end of the biotreatment mentioned above. Several mitosporic fungi isolated from soil grew in presence of a mixture of three PCBs congeners when also glucose was provided. This is the first study in which 5 strains of mitosporic species able to biodegrade PCB are reported in the literature.
390

Biometanazione della frazione organica dei rifiuti solidi urbani attraverso codigestione con letame bovino

Bettini, Cristina <1983> 28 June 2011 (has links)
An anaerobic consortium, capable of efficiently converting into methane the organic fraction of mechanically sorted municipal solid waste (MS-OFMSW), was obtained through a dedicated enrichment procedure in a 0.36 L up-flow anaerobic recirculated reactor. This result was obtained after several micro-reactor fed-batch procedures that allowed to obtain only a few methanization of the MS-OFMSW.

Page generated in 0.049 seconds