• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and application of new bipyridine ligands / Synthèse et applications de nouveaux ligands bipyridine

Bednarova, Eva 26 November 2018 (has links)
Les 2,2´-bipyridines et leurs homologues, les N,N´-dioxydes, appartiennent à une classe de composés hétéroaromatiques très importante ayant montré de nombreuses applications dans le domaine de la chimie et principalement en synthèse asymétrique. Une des méthodes les plus performantes pour leurs synthèses s´est révélée être une réaction de cocyclotrimérisation d´alcynes en présence de dérivés nitriles.Une nouvelle variante de la réaction de cyclotrimérisation – cocyclotrimérisation de diynes halogénés avec des dérivés nitriles – permettant la formation de composés 2- et3-halogéno-pyridines a ainsi été développée. La réaction a été étudiée sur une large gamme de substrats permettant l´accès à une librairie de pyridines avec de bons rendements. La formation d´un sous-produit, issu d´un échange d´halogène, a été approfondie au cours de l´étude et son origine a été élucidée grâce à différentes expériences.Les 2-halogéno-pyridines ont été utilisées comme réactifs de départ pour la synthèse de ligands chiraux de type 2,2´-bipyridines. L´étape problématique s´est avérée être la réaction de dimérisation réductrice des 2-halogéno-pyridines donnant accès aux2,2-bipyridines correspondantes. L´efficacité de ces ligands chiraux de type 2,2´-bipyridinea été évaluée dans différentes réactions asymétriques catalysées par des métaux de transition telles que l´aldolisation de Mukaiyama, l´hydroxyméthylation, l´addition conjuguée, l´activation C–H d´indoles mais aussi la désymmétrisation d´époxydes meso, dans laquelle un des ligands bipyridines a montré une extraordinaire activité et robustesse. Ensuite, basées sur des analyses RMN, des calculs DFT et des analyses par diffraction des rayons X, les propriétés structurales de ce ligand ont été étudiées.De plus, une nouvelle famille de catalyseurs à chiralité axiale de type 2,2´-bipyridines N,N´-dioxydes a pu être synthétisée via 2 différentes approches, où seule l´étape clé de dimérisation diffère. La première approche, basée sur la réaction de dimérisation réductrice des 2-halogéno-pyridines, permet l´obtention d´un seul atropoisomère du N,N´-dioxydes cible après une séquence réactionnelle de 8 étapes tandis que la seconde approche, basée sur la réaction de dimérisation oxydante de pyridines N-oxydes, donne l´accès aux 2 atropoisomères en seulement 5 étapes. Le champs d´application de ces nouveaux catalyseurs de typeN,N´-dioxydes, en tant que base de Lewis, a été examiné dans l´allylation énantiosélective du benzaldéhyde ainsi que dans l´aldolisation de l´acétal de cétène trichlorosilylé en présence de l´acétophénone. / 2,2'-Bipyridines and their appropriate N,N'-dioxides form a significant class of heteroaromatic compounds, which has found application in various fields of chemistry and predominantly in asymmetric catalysis. One of the most powerful methods for their synthesis is cocyclotrimerization of alkynes with nitriles.A new variant of cyclotrimerization reaction – cocyclotrimerization of halodiynes with nitriles, which results in the formation of 2- and 3-halopyridines, has been developed. The reaction was studied on a wide range of substrates providing the pyridine products in good isolated yields. Formation of an unexpected product of halogen exchange reaction was observed during the course of the study and its origin was elucidated by experimental studies.The prepared 2-halopyridines were used as starting materials for syntheses of new chiral 2,2'-bipyridine ligands. The crucial step of their synthesis turned out to be the reductive dimerization of 2-halopyridines to the corresponding 2,2'-bipyridines. Application of the formed bipyridine ligands was then tested in various metal-catalyzed asymmetric reactions, namely Mukaiyama aldol reaction, hydroxymethylation, conjugate addition, C–H activation of indole and desymmetrization of meso-epoxides, in which one of the bipyridine ligands showed extraordinary activity and robustness. The structural properties of this ligand were then studied based on the NMR analyses, DFT calculations and single crystal X-ray analyses.New axially chiral 2,2'-bipyridine N,N'-dioxides were synthesized via two approaches, which differed in the type of the key dimerization step. While the first approach, based on the reductive dimerization of 2-halopyridines, furnished only one atropoisomer of the target N,N'-dioxide by an eight-step reaction sequence, the second approach, based on oxidative dimerization of pyridine-N-oxides, provided both atropoisomers in only five steps. The applicability of these novel N,N'-dioxides as Lewis base catalysts were then examined in the enantioselective allylation of benzaldehyde and aldol reaction of trichlorosilyl ketene acetal with acetophenone.
2

Syntéza a aplikace nových bipyridinových ligandů / Synthesis and application of new bipyridine ligands

Bednářová, Eva January 2018 (has links)
2,2'-Bipyridines and their appropriate N,N'-dioxides form a significant class of heteroaromatic compounds, which has found application in various fields of chemistry and predominantly in asymmetric catalysis. One of the most powerful methods for their synthesis is cocyclotrimerization of alkynes with nitriles. A new variant of cyclotrimerization reaction - cocyclotrimerization of halodiynes with nitriles, which results in the formation of 2- and 3-halopyridines, has been developed. The reaction was studied on a wide range of substrates providing the pyridine products in good isolated yields. Formation of an unexpected product of halogen exchange reaction was observed during the course of the study and its origin was elucidated by experimental studies. The prepared 2-halopyridines were used as starting materials for syntheses of new chiral 2,2'-bipyridine ligands. The crucial step of their synthesis turned out to be the reductive dimerization of 2-halopyridines to the corresponding 2,2'-bipyridines. Application of the formed bipyridine ligands was then tested in various metal-catalyzed asymmetric reactions, namely Mukaiyama aldol reaction, hydroxymethylation, conjugate addition, C-H activation of indole and desymmetrization of meso-epoxides, in which one of the bipyridine ligands showed...
3

Synthesis and photophysical characterization of re(i) and ru(ii) complexes: potential optical limiting materials and light harvesting systems

January 2013 (has links)
This dissertation can be divided into two parts project goals. The first one is the synthesis of rhenium (Re) complexes which are potential reverse saturable absorber (RSA) materials. The second one is the polymerization of ruthenium (Ru) polypyridyl monomers to have an oligomer ensemble for solar light harvesting purposes. THE FIRST part starts with an introduction to optical limiting materials (OLM) (chapter 1). The main discussion in chapter 4 is about the photophysical properties and energy-transfer reactions for three series of facial Re(I) tri-carbonyl complexes. The complexes are of the general type fac-[Re(CO)3(N-N)Cl], where Cl is the chloride and N-N are novel mono functionalized aryl-oligo(p-phenylene-vinylene) bipyridine (bpy) ligands. These series is as a result of changing the aryl group of the ligands to either anthracene or pyrene, and di-alkoxy attachments of phenyl ring in anthracene bipyridine ligands. The synthesis of the bpy ligands involved attaching various aryls by utilizing successive multi-step Wittig-Horner reactions (chapter 2). The ligands were later reacted with Re pentacarbonyl chloride to obtain the complexes. Chromium complexes synthesis is also included (chapter 3). The characterization involved 1H NMR, ESI-MS and elemental analysis. There is also another set of ligands where the aryl group is di-methylaminophenyl where the solvatochromic emission properties of the ligands were studied but were not coordinated to metals. The excited-state properties using both the nanosecond (ns) and picosecond (ps) time resolved transient absorption (TA) of Re(I) complexes shows strong positive excited-state absorption signals in 500-800 nm range. From the TA (ps) and time-resolved infrared of the carbonyl region, the excited state forms instantaneously after excitation. Their observed lifetimes are relatively long (2 μs-40 μs range) and they increase as the phenylene-vinylene linker increases. The excited state triplet energies values for the complexes were obtained experimentally using energy transfer method from the simple Sandros relation. They decreases as the π-conjugated phenylene-vinylene linker decreases, this is because the extended backbone bridge serves to lower the energy of the triplet excited state. Lastly, the Re(I) complexes triplet-triplet molar extinction coefficients(δex) were measured by energy transfer to a standard method and their ratios to the ground state molar absorptivity(δg ) are all (δex/δg ≥40) at 530nm which make them potential candidates for RSA. THE SECOND part involves RAFT polymerization of two new acrylamide functionalized Ru(II) polypyridyl monomers. Photoinduced electron transfer reactions for the obtained Ru oligomers and complexes were done using 10-methylphenothiazine (MPT) quencher (chapter 8). The synthesized acrylamide functionalized bipyridine ligand (chapter 6) was reacted with complex precursors cis-[Ru(L)2Cl2] where the ligand (L) is either 2,2’- bipyridine or biquinoline (chapter 7). The obtained Ru(II) photosensitizers acts as energy donating and accepting respectively. The attachment of these Ru complexes to oligomer backbone as side chains is by a C11 alkyl linker. 1H NMR, UV-Vis spectroscopy, and differential pulse voltammetry (DPV) were used to characterize the ligand, monomers and oligomers. The excited state REDOX potentials were determined using the cyclic voltammetry (CV) values and steady state emission values converted to electron volt (eV). Lastly, the TAs (ns) obtained in the presence of MPT electron donating quencher was in agreement with the ones calculated/ predicted from spectroelectrochemistry. These efforts are toward the goal of making a panchromatic solar light collector in the visible region (chapter 5). / acase@tulane.edu

Page generated in 0.0986 seconds