• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • Tagged with
  • 14
  • 14
  • 14
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Home range size and habitat use patterns of the Sanderling (Calidris alba) on the Oregon coast nonbreeding range, and comparison with home range sizes in California and Peru

Zeeuw, Maureen L. de, 1961- January 1990 (has links)
Typescript. Includes vita and abstract. Bibliography: Includes bibliographical references (leaves 62-64). / During the nonbreeding season I observed the degree of site faithfulness of individual Sanderlings, Calidris alba, on the Pacific coast of southcentral Oregon, and the linear home range size was estimated. Home range size of Oregon birds and range sizes of individuals wintering in coastal areas of California and Peru were compared to determine if annual migration distance from the high arctic breeding ground is positively correlated with home range size. Oregon sanderlings on average remained within a minimum range of 17 kID during the nonbreeding season from October thrcugh April, although spring data are sparse. The Oregon home range is significantly larger than that of birds in Bodega Bay, California, and similar to that of birds in Peru. Therefore home range size is not correlated with distance from the breeding ground.
12

Avian population densities, habitat use, and foraging ecology in thinned and unthinned hardwood forests in Southwestern Virginia

Garrison, Barrett A. January 1986 (has links)
I examined impacts of thinning on bird population densities and habitat use in Appalachian mixed-hardwood forests during 1984 and 1985 at three thinned and three unthinned stands in the Jefferson National Forest, southwestern Virginia. Densities of shrubs, saplings, trees, and snags, canopy and ground cover, and foliage volume were the structural variables most influenced by thinning. Populations of shrub/understory birds were higher in thinned stands than unthinned stands. Canopy-dwelling species showed variable population responses to thinning. Habitat use similarities were used to group 13 bird species into three categories: (1) shrub/conifer species included the tufted titmouse, blue-gray gnatcatcher, wood thrush, ovenbird, and hooded warbler, (2) generalist species included the eastern wood-pewee, red-eyed vireo, black-and-white warbler, and scarlet tanager, and (3) mature/deciduous species included the white-breasted nuthatch, solitary vireo, blackburnian warbler, and worm-eating warbler. Shrub, snag, and conifer density and ground cover were the four habitat variables most important in separating used from unused sites. Foraging behavior and resource use of seven bird species were examined in two thinned and two unthinned stands. No differences in foraging methods or niche breadth were found between the stands for all species. Differences in foraging and tree heights were due to tree height differences between the stands. For most species, foraging resource use was equal to availability. Short, small diameter trees were rarely used. Oaks were used most often, and red maple and conifers were rarely used for foraging. The opportunistic nature of avian foraging behavior and the vegetative differences between thinned and unthinned stands led to the foraging differences noted. / Master of Science
13

Understanding Patterns of Bird Species Distribution in the Western Ghats

Vijayakumar, Sneha January 2015 (has links) (PDF)
Macroecology is the study of relationships between organisms and the environment at large spatial and temporal scales. This field of research examines patterns in species abundance, distribution and diversity. Understanding patterns in species distribution and richness can contribute significantly to our knowledge of community assembly and macroecological patterns, as well as to the effective conservation of threatened species and habitats. Although there have been a plethora of studies on birds in India over the years, there is a critical need to accurately delineate species distributions and understand patterns of richness. The focus of this study was to understand the factors (abiotic and biotic) that influence the distribution and composition of bird species in the Western Ghats, as well as to explore patterns in their geographic range sizes. The objectives of this study were addressed at the scale of the entire Western Ghats using a combination of field surveys, secondary data collection and species distribution modeling. The specific approaches to address these questions and the findings are outlined below. Chapter 2: Bird species in the Western Ghats – Patterns in composition and richness Fine-scale data on species presence and abundance are essential for exploring patterns in species distribution and richness. Despite the fact that birds have been extensively studied in the Western Ghats, systematic data collection and compilation of information over the entire mountain range has not been carried out, especially for the purpose of testing macroecological questions. This chapter describes patterns in bird species presence, abundance, composition and richness within the Western Ghats. The study area, site selection protocol and the sampling technique have also been described in detail. This dataset establishes a baseline of information about birds in the Western Ghats and subsets of this larger dataset will be used to address various questions in the following chapters. Chapter 3: Predicting bird species distribution in the Western Ghats Detailed knowledge of species’ ecological and geographical distributions is fundamental for conservation, as well as for understanding ecological and evolutionary determinants of spatial patterns of biodiversity. However, occurrence data for a vast majority of species are sparse, resulting in information about species distributions that is inadequate for many purposes. Species distribution models attempt to provide detailed predictions of distributions by relating presence or abundance of species to environmental predictors. In this chapter, we describe the usage of Maxent, a species distribution modelling technique based on presence-only data, to predict the distributions of bird species within the Western Ghats. For this purpose, we put together primary locations of bird species presence along with a published dataset. Using a number of important environmental layers, predicted species distribution maps were derived for 98 bird species, including 13 endemics, in the Western Ghats. Additionally, we calculated predicted range sizes for each of these species and obtained percentage contributions of important environmental predictors to each species’ distribution. This is the first study to develop species distribution models for bird species within the Western Ghats. Chapter 4: Patterns of range size among bird species Understanding large-scale patterns of variation in species geographic range size is fundamental to questions in macroecology and conservation biology. In general, range is believed to be influenced by a combination of environmental factors, evolutionary history and biotic interactions, mediated by species specific traits. These patterns need to be examined even for well-studied taxa like birds, especially within biodiversity hotspots faced by persistent degradation due to anthropogenic activities such as the Western Ghats. In this chapter, we use a dataset of 98 bird species within the Western Ghats to examine trends in range sizes, measured as latitudinal extent of occurrence and predicted range size from species distribution models. We show a significant relationship between latitude and range size for these bird species, supporting Rapoport’s rule. As far as we know, this relationship has never been tested at such low latitudes for birds. We also find that species traits such as body size, mean abundance and diet do not seem to show any discernable effect on patterns of range size. Additionally, we found that widely-used bird species range maps (in this case, from BirdLife International) are inaccurate representations of species ranges in comparison to the predicted species distribution maps that were derived in the previous chapter. We quantitatively demonstrated that these expert-drawn maps need to re-evaluated, especially since they are used to make conservation decisions. This is the first study to quantify species range sizes of birds within the Western Ghats and assess such range maps that are used to determine conservation status of species. Chapter 5: Environmental predictors of bird species distribution One of the major goals in ecology is to understand patterns and processes that determine species diversity. The drivers of global species richness gradients have been studied, especially in the case of birds, in terms of contemporary and historical factors. Such broad scale processes may not always reflect the processes affecting richness and distribution at smaller scales. Therefore, understanding the factors that influence individual species distributions is the first step towards this larger goal. In this chapter, we examined the environmental predictors that contributed to the predicted distribution of bird species observed in the Western Ghats, using the variable importance contribution values derived in Chapter 3. We found that a large proportion of the 98 bird species studied were influenced by normalized differential vegetation index, annual precipitation and elevation. The predictors did not differ among birds of different diet guilds and body size classes. Using Prinicipal components analysis, we observed that all 98 bird species are spread out across the environmental ordination space depicted by the PC axes 1 and 2. These axes are governed by measures of habitat heterogeneity and water-energy related variables, consistent with other tropical studies. The insectivorous guild seemed to occupy a variety of environmental niches across this space and other guilds seemed to be nested within the insectivorous guild. Similarly, larger sized birds were spread across the entire environmental ordination space, with species of smaller sizes nested within. This is the first step in trying to understand environmental predictors acting on birds in the Western Ghats. Further detailed studies need to be carried out to come to definite conclusions. Chapter 6: Relative roles of floristics and vegetation structure on bird species composition On the basis of the hierarchical model of habitat selection, it is known that birds select suitable habitats based on vegetation structure (physiognomy) at coarse biogeographic scales, and plant species composition (floristics) at more local scales. This chapter examines the relative influence of tree species composition and vegetation structure on bird species composition in the Western Ghats. These relationships were specifically assessed across the entire Western Ghats, within regions of the Western Ghats as well as within specific forest types. We found that floristics had a strong association with bird species composition across the Western Ghats and within evergreen and mixed deciduous habitat types. This association seems to be independent of the structural variation in the region. There was a decrease in association strength from the southern to the northern Western Ghats, in terms of both floristics and structure. We did not find an association between vegetation structure and insectivore composition, whereas phytophage composition did show a stronger association with floristics than structure. This is the first study at the scale of the entire Western Ghats to test the relative roles of floristics and vegetation structure. Taken as a whole, this dissertation examines large-scale macroecological questions regarding species distribution, range size and patterns of composition using primary data at the scale of the Western Ghats. The findings of this study have established a foundation that will help further our understanding of species distribution and richness in the Western Ghats, and aid in the decision making for conservation strategies in the future.
14

Quantifying crop damage by Grey crowned crane balearica regulorum regulorum and evaluating changes in crane distribution in the North Eastern Cape, South Africa

Van Niekerk, Mark Harry January 2011 (has links)
Complaints of crop damage by cranes on planted maize in the North Eastern Cape, South Africa, have been increasing since the mid-1990‘s, and in some instances severe losses have been reported. Crop damage by the Grey Crowned Crane Balearica regulorum regulorum near the town of Maclear (31º04´S 28º22´E), has been quantified over two growing seasons, and assessed relative to losses caused by foraging Cape Crows Corvus capensis and other feeding damage assumed to be caused by insects. Twelve fields were selected based on previous patterns of crop depredation. Maize seed in seven of the fields was treated with the chemical ‗Gaucho‘ and five fields were planted with untreated maize. In order to determine the source of losses, twenty quadrats (4 m x 4 m) randomly distributed within each field were visited on average every second day, for a period of up to twenty eight days. Results indicate that seed treatments do act as a deterrent to feeding by both cranes and crows, however crane damage is generally insignificant compared to other sources of damage. My study also reviewed past sightings data of the Grey Crowned Crane in an effort to determine if the conversion of former grassland to plantations in this region may have increased foraging activity in maize fields. The data did not allow for clear-cut conclusions regarding changes in distribution or population trends. Conclusions provide direct input into the management of agricultural areas by enabling landowners to take steps to mitigate crop damage. These mitigation measures may either involve the application of seed treatments, or the planting of low risk crops in high risk areas. Future studies should consider the ppossible detrimental effects of chemical seed treatments on crane biology.

Page generated in 0.1134 seconds