• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation of Dulling Rate and Bit Tooth Wear Using Drilling Parameters and Rock Abrasiveness

Mazen, Ahmed Z., Rahmanian, Nejat, Mujtaba, Iqbal M., Hassanpour, A. January 2019 (has links)
No / Optimisation of the drilling operations is becoming increasingly important as it can significantly reduce the oil well development cost. One of the major objectives in oil well drilling is to increase the penetration rate by selecting the optimum drilling bit based on offset wells data, and adjust the drilling factors to keep the bit in good condition during the operation. At the same time, it is important to predict the bit wear and the time to pull out the bit out of hole to prevent fishing jobs. Numerous models have been suggested in the literature for predicting the time to pull the bit out to surface rather than predict or estimate the bit wear rate. Majority of the available models are largely empirical and can be applied for limited conditions, and do not include all the drilling parameters such as the formation abrasiveness and bit hydraulic. In this paper, a new approach is presented to improve the drill bit wear estimation that consists of a combination of both Bourgoyne and Young (BY) drilling rate model and theory of empirical relation for the effects of rotary speed (RPM), and weight on bit (WOB) on drilling arte (ROP) and rate of tooth wear. In addition to the drilling parameters, the formation abrasiveness and the effect of the jet impact force of the mud have also been accounted to estimate the bit wear. The proposed model enables estimation of the rock abrasiveness, and that lead to calculate the dynamic dulling rate of the bit while drilling that used in more accurate to assess the bit tooth wear compared with the mechanical specific energy (MSE). Then the estimated dulling rate at the depth of pulling out is used to determine the dull grade of the bit. The technique is validated in five wells located in two different oil fields in Libya. All studied wells in this showed a good agreement between the actual bit tooth wear and the estimated bit tooth wear.
2

Effective mechanical specific energy: A new approach for evaluating PDC bit performance and cutters wear

Mazen, Ahmed Z., Rahmanian, Nejat, Mujtaba, Iqbal M., Hassanpour, A. 21 October 2020 (has links)
Yes / Predicting the PDC bit performance during drilling operation is important for the cost effectiveness of the operation. The majority of PDC bits are assessed based on their performance that are relative to offset wells. Determination of mechanical specific energy (MSE) in real time and compare it with the known MSE for a sharp bit to assess the bit life has been utilized by several operators in the past. However, MSE still cannot be used to predict the bit performance in exploration wells and also it cannot assess the bit efficiency in the inner and outer cones. A more precise approach needs to be devised and applied to improve the prediction of bit life and the decision when to pull the bit out of the hole. Effective mechanical specific energy (EMSE) developed in this work is a new wear and performance predictive model that is to measure the cutting efficiency based on number of cutters, which contact the rock as a function of weight on bit (WOB), rotary speed (RPM), torque, and depth of cut (DOC). This model modifies the previous MSE model by incorporating such parameters and including detailed design of the bit, number of blades, cutter density, cutter size, and cutting angle. Using this approach together with the analysis of rock hardness, a level of understanding of how the drilling variables influence the bit performance in the inner and outer cone is improved, and a convenient comparison of the bit condition in the frame of the standard bit record is achieved. This work presents a new simple model to predict the PDC cutters wear using actual data from three sections drilled in three oil wells in Libya. It is found that the obtained results are in well agreement with the actual dull grading shown in the bit record.
3

Assessment and Modelling of Wear prediction and Bit Performance for Roller Cone and PDC Bits in Deep Well Drilling

Mazen, Ahmed Z.M. January 2020 (has links)
Drilling is one of the important aspects in the oil and gas industry due to the high demand for energy worldwide. Drilling time is considered as the major part of the operations time where the penetration rate (ROP) remains as the main factor for reducing the time. Maximizing ROP to lower the drilling cost is the main aim of operators. However, high ROP if not controlled may impact on the well geometry in terms of wellbore instability, cavities, and hole diameter restrictions. Accordingly, more time is needed for the other operations that follow such as: pool out of hole (POOH), casing running, and cementing. Bit wear is considered as the essential issue that influences in direct way on the bit performance and reduce ROP. Predicting the abrasive bit wear is required to estimate the right time when to POOH to prevent any costly job to fish any junk out to the surface. The two-common types of bits are considered in the research, rock bits (roller cone bits) and Polycrystalline Diamond Compact bits (PDC). This study focuses more on PDC bits because about 60% of the total footage drilled in wells worldwide were drilled by PDC bits and this is expected to reach 80% in 2020. The contribution of this research is to help reducing the drilling cost by developing new tools not to estimating the time when to POOH to surface but also to measure the wear and enhance the accuracy of prediction the bit efficiency. The work is broken down into four main stages or models to achieve the objective: The first stage; estimating of the rock abrasiveness and calculate the dynamic dulling rate of the rock bit while drilling. The second stage; estimating the PDC abrasive cutters wear by driving a new model to determine the mechanical specific energy (MSE), torque, and depth of cut (DOC) as a function of effective blades (EB). The accuracy of the predicted wear achieves 88% compared to the actual dull grading as an average for bits used in five wells. The third stage; modifying the previous MSE tool to develop a more accurate approach; effective mechanical specific energy (EMSE), to predict the PDC bit efficiency in both the inner and outer cone to match the standard bit dulling. The fourth stage; predicting ROP while PDC drilling in hole by accounting three parts of the process: rock drillability, hole cleaning, and cutters wear. The results achieve an enhancement of about 40% as compared to the available previous models. Consequently, the developed models in this study provide a novelty on understanding in more details the bit rock interface process and gain an idea of the relationship between the drilling parameters to enhance the bit performance and avoid damaging the bit. This is basically about optimisation the controllable factors such as: weight on bit (WOB), rotary speed (RPM), and flow rate. The result is the reduction in time losses and the operations cost. To ensure reliability and consistency of the proposed models, they were validated with several vertical oil wells drilled in Libya. The results from the validation of the models are consistent with the real field data. The research concludes that the developed models are reliable and applicable tool for both: to assist decision-makers to know when to pull the bit out to surface, and also to estimate the bit performance and wear.

Page generated in 0.0538 seconds