• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resource allocation problems in communication and control systems

Vemulapalli, Manish Goldie 01 December 2012 (has links)
Resource allocation in control and communication systems constitutes the distribution of (finite) system resources in a way that achieves maximum system functionality and or cost effectiveness. Specific resource allocation problems in subband coding, Discrete Multi-tone modulation based systems and autonomous multi-agent control are addressed in this thesis. In subband coding, the number of bits used (out of a target bit budget) to code a sub- band signal are allocated in a way that minimizes the coding distortion. In Discrete Multi-tone modulation based systems, high bit rate streams are split into several parallel lower rate streams. These individual data streams are transmitted over different subchannels. Given a target bit rate, the goal of resource allocation is to distribute the bits among the different subchannels such that the total transmitted power is minimized. The last problem is achieving stable control of a fleet of autonomous agents by utilizing the available communication resources (such as transmitted Power and bandwidth) as effectively as possible. We present an efficient bit loading algorithm that applies to both subband coding and single-user multicarrier communication system. The goal is to effect an optimal distribution of B bits among N subchannels (subbands) to achieve a minimum transmitted power (distortion error variance) for multicarrier (subband coding) systems. All the algorithms in literature, except a few (which provides a suboptimal solution), have run times that increase with B. By contrast, we provide an algorithm that solves the aforementioned problems exactly and with a complexity (given by O(N log(N)),) which is dependent only on N. Bit loading in multi-user multicarrier systems not only involves the distribution of bit rates across the subchannels but also the assignment of these subchannels to different users. The motivation for studying suboptimal bit allocation is underscored by implicit and explicit claims made in some of the papers which present suboptimal bit loading algorithms, without a formal proof, that the underlying problem is NP-hard. Consequently, for no other reason than the sake of completeness, we present a proof for NP-hardness of the multiuser multicarrier bit loading problem, thereby formally justifying the search for suboptimal solutions. There has been a growing interest in the area of cooperative control of networks of mobile autonomous agents. Applications for such a set up include organization of large sensor networks, air traffic control, achieving and maintaining formations of unmanned vehicles operating under- water, air traffic control etc. As in Abel et al, our goal is to devise control laws that, require minimal information exchange between the agents and minimal knowledge on the part of each agent of the overall formation objective, are fault tolerant, scalable, and easily reconfigurable in the face of the loss or arrival of an agent, and the loss of a communication link. A major drawback of the control law proposed in Abel et al is that it assumes all agents can exchange information at will. This is fine if agents acquire each others state information through straightforward sensing. If however, state information is exchanged through broadcast commu- nication, this assumption is highly unrealistic. By modifying the control law presented in Abel et al, we devise a scheme that allows for a sharing of the resource, which is the communication channel, but also achieves the desired formation stably. Accordingly we modify the control law presented in [23] to be compatible with networks constrained by MAC protocols.
2

Sistemas Clustered-OFDM SISO e MIMO para power line communication

Colen, Guilherme Ribeiro 06 September 2012 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-04-20T15:37:28Z No. of bitstreams: 1 guilhermeribeirocolen.pdf: 1980646 bytes, checksum: 55067533570f6bd2d5a1ab3288db464d (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-04-24T16:49:37Z (GMT) No. of bitstreams: 1 guilhermeribeirocolen.pdf: 1980646 bytes, checksum: 55067533570f6bd2d5a1ab3288db464d (MD5) / Made available in DSpace on 2017-04-24T16:49:37Z (GMT). No. of bitstreams: 1 guilhermeribeirocolen.pdf: 1980646 bytes, checksum: 55067533570f6bd2d5a1ab3288db464d (MD5) Previous issue date: 2012-09-06 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / Esta dissertação tem como objetivo investigar, propor e analisar esquemas para reduzir a complexidade computacional de algoritmos implementados na camada física de transceptores para comunicação de dados via rede elétrica - power line communication (PLC) que são baseados em multiplexação por divisão de frequência ortogonal - orthogonal frequency division multiplexing (OFDM). Inicialmente, o Clustered-OFDM é investigado e analisado com o intuito de reduzir a complexidade computacional dos transceptores PLC. Além disto, uma relação entre complexidade computacional e desempenho é demonstrada para Clustered-OFDM e múltiplo acesso por divisão de frequência ortogonal - orthogonal frequency division multiple access (OFDMA). Os resultados computacionais quantificam a relação entre complexidade computacional e redução da capacidade do canal para o Clustered-OFDM em comparação com o OFDMA. Em seguida, é proposto e analisado um esquema Clustered-OFDM para comunicação com múltiplas entradas e múltiplas saídas - multiple-input and multiple-output (MIMO) 2×2, denominado MIMO-Clustered-OFDM, que tem como base um código de bloco espacial e temporal. Os resultados de comparações revelam que a proposta MIMO-Clustered-OFDM pode reduzir a capacidade do canal para atingir uma menor complexidade computacional, comparado ao MIMO-OFDMA. Por último, é introduzido um processo para analisar estatisticamente a degradação gerada pelo agrupamento de subportadoras contíguas para o uso de algoritmos de alocação de bits. Um estudo de caso com canais PLC revela que o critério aplicado para agrupar subportadoras contíguas pode proporcionar diferentes níveis de reduções de rendimento, bem como de outras perdas de desempenho se o tamanho do grupo é variável. / This thesis aims at investigating, proposing, and analyzing techniques to reduce the computational complexity of algorithms implemented in the physical layer of power line communication (PLC) transceivers which are based on orthogonal frequency division multiplexing (OFDM). First, the clustered-OFDM is investigated and analyzed to reduce computational complexity. Also, a trade between computational complexity and performance is demonstrated for clustered-OFDM and orthogonal frequency division multiple access (OFDMA). Performance results quantify what kind of tradeoff between computational complexity and capacity reduction can be achieved in comparison with OFDMA. Second, a clustered-OFDM scheme for 2×2 multiple input multiple output (MIMO) communication based on space time block code, named MIMO-clustered-OFDM, is proposed and analyzed. Comparison results reveal that the proposed MIMO-clustered-OFDM can trade capacity with computational complexity and can achieve lower computational complexity than MIMO-OFDMA. Third, a procedure to statistically analyze the degradation yielded by the use of granularity for grouping a set of contiguous subcarriers to be used by bitloading algorithm is introduced. A case study with PLC channels reveals that the criterion applied to group of contiguous subcarriers can offer different levels of throughput reductions and other performance losses if the size of the group is varied.

Page generated in 0.0534 seconds