• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bitstream specialisation for dynamic reconfiguration of real-time applications / Ronnie Rikus le Roux

Le Roux, Ronnie Rikus January 2015 (has links)
The focus of this thesis is on specialising the configuration of a field-programmable gate array (FPGA) to allow dynamic reconfiguration of real-time applications. The dynamic reconfiguration of an application has numerous advantages, but due to the overhead introduced by this process, it is only advantageous if the execution time exceeds reconfiguration time. This implies that dynamic reconfiguration is more suited to quasi-static applications, and real-time applications are therefore typically not reconfigured. A method proposed in the literature to ameliorate the overhead from the configuration process is to use a block-RAM (BRAM) based, hardware-controlled reconfiguration architecture, eliminating the need for a processor bus by storing the configuration in localised memory. The drawback of this architecture is the limited size of the BRAM, implying only a subset of configurations can be stored. The work presented in this thesis aim to address this size limitation by proposing a specialiser capable of adapting the configuration stored in the BRAM to represent different sets of hardware. This is done by directly manipulating the bits in the configuration using passive hardware. This not only allows the configuration to be specialised practically immediately, but also allows this specialiser to be device independent. By incorporating this specialiser into the BRAM-based architecture, this study sets out to establish that it is possible to reduce the overhead of the reconfiguration process to such an extent that dynamic reconfiguration can be used for real-time applications. Since the composition of the configuration is not publicly available, a method had to be found to parse and analyse the configuration in order to map the configuration space of the device. The approach used was to compare numerous different configurations and mapping the differences. By analysing these differences, it was found that there is a logical relationship between the slice coordinates and the configuration space of the device. The encoding of the lookup tables was also determined from their initialisation parameters. This allows the configuration of any lookup table to be changed by simply changing the corresponding bits in the configuration. Using this proposed reconfiguration architecture, a distributed multiply-accumulate was reconi figured and its functional density measured. The reason for selecting this specific application is because the multiply-accumulate instruction can be found at the heart of many real-time applications. If the functional density of the reconfigured application is comparable to those of its static equivalent, a strong case can be made for real-time reconfiguration in general. Functional density is an indication of the composite benefits dynamic reconfiguration obtains above its static generic counterpart. Due to the overhead of the reconfiguration process, the functional density of reconfigured applications is traditionally significantly lower than those of static applications. If the functional density of the reconfigured application can rival those of the static equivalent, the overhead from the reconfiguration process becomes negligible. Using this metric, the functional density of the distributed multiply-accumulate was compared for different reconfiguration implementations. It was found that the reconfiguration architecture proposed in this thesis yields a significant improvement over other reconfiguration methods. In fact, the functional density of this method rivalled that of its static equivalent, implying that it is possible to dynamically reconfigure a real-time application. It was also found that the proposed architecture reduces specialisation and reconfiguration time to such an extent that it is possible complete the reconfiguration process within strict time constraints. Even though the proposed method is only capable of reconfiguring the LUTs of a real-time application, this is the first step towards allowing full reconfiguration of applications with dynamic characteristics. The first contribution this thesis makes is a novel method to parse and analyse the configuration of a XilinxR VirtexR -5 FPGA. It also successfully maps the configuration space to the configuration data. Even though this method is applied to a specific device, it is device independent and can easily be applied to any other FPGA. The second contribution comes from using the information obtained from this analysis to design and implement a configuration specialiser, capable of adapting lookup tables in real time. Lastly, the third contribution combines this specialiser with the BRAM-based architecture to allow the reconfiguration of applications typically not reconfigured. / PhD (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2015
2

Bitstream specialisation for dynamic reconfiguration of real-time applications / Ronnie Rikus le Roux

Le Roux, Ronnie Rikus January 2015 (has links)
The focus of this thesis is on specialising the configuration of a field-programmable gate array (FPGA) to allow dynamic reconfiguration of real-time applications. The dynamic reconfiguration of an application has numerous advantages, but due to the overhead introduced by this process, it is only advantageous if the execution time exceeds reconfiguration time. This implies that dynamic reconfiguration is more suited to quasi-static applications, and real-time applications are therefore typically not reconfigured. A method proposed in the literature to ameliorate the overhead from the configuration process is to use a block-RAM (BRAM) based, hardware-controlled reconfiguration architecture, eliminating the need for a processor bus by storing the configuration in localised memory. The drawback of this architecture is the limited size of the BRAM, implying only a subset of configurations can be stored. The work presented in this thesis aim to address this size limitation by proposing a specialiser capable of adapting the configuration stored in the BRAM to represent different sets of hardware. This is done by directly manipulating the bits in the configuration using passive hardware. This not only allows the configuration to be specialised practically immediately, but also allows this specialiser to be device independent. By incorporating this specialiser into the BRAM-based architecture, this study sets out to establish that it is possible to reduce the overhead of the reconfiguration process to such an extent that dynamic reconfiguration can be used for real-time applications. Since the composition of the configuration is not publicly available, a method had to be found to parse and analyse the configuration in order to map the configuration space of the device. The approach used was to compare numerous different configurations and mapping the differences. By analysing these differences, it was found that there is a logical relationship between the slice coordinates and the configuration space of the device. The encoding of the lookup tables was also determined from their initialisation parameters. This allows the configuration of any lookup table to be changed by simply changing the corresponding bits in the configuration. Using this proposed reconfiguration architecture, a distributed multiply-accumulate was reconi figured and its functional density measured. The reason for selecting this specific application is because the multiply-accumulate instruction can be found at the heart of many real-time applications. If the functional density of the reconfigured application is comparable to those of its static equivalent, a strong case can be made for real-time reconfiguration in general. Functional density is an indication of the composite benefits dynamic reconfiguration obtains above its static generic counterpart. Due to the overhead of the reconfiguration process, the functional density of reconfigured applications is traditionally significantly lower than those of static applications. If the functional density of the reconfigured application can rival those of the static equivalent, the overhead from the reconfiguration process becomes negligible. Using this metric, the functional density of the distributed multiply-accumulate was compared for different reconfiguration implementations. It was found that the reconfiguration architecture proposed in this thesis yields a significant improvement over other reconfiguration methods. In fact, the functional density of this method rivalled that of its static equivalent, implying that it is possible to dynamically reconfigure a real-time application. It was also found that the proposed architecture reduces specialisation and reconfiguration time to such an extent that it is possible complete the reconfiguration process within strict time constraints. Even though the proposed method is only capable of reconfiguring the LUTs of a real-time application, this is the first step towards allowing full reconfiguration of applications with dynamic characteristics. The first contribution this thesis makes is a novel method to parse and analyse the configuration of a XilinxR VirtexR -5 FPGA. It also successfully maps the configuration space to the configuration data. Even though this method is applied to a specific device, it is device independent and can easily be applied to any other FPGA. The second contribution comes from using the information obtained from this analysis to design and implement a configuration specialiser, capable of adapting lookup tables in real time. Lastly, the third contribution combines this specialiser with the BRAM-based architecture to allow the reconfiguration of applications typically not reconfigured. / PhD (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2015

Page generated in 0.1921 seconds