Spelling suggestions: "subject:"black home physics"" "subject:"black hope physics""
1 |
INVESTIGATION OF PRIMORDIAL BLACK HOLE BURSTS USING INTERPLANETARY NETWORK GAMMA-RAY BURSTSUkwatta, T. N., Hurley, K., MacGibbon, J. H., Svinkin, D. S., Aptekar, R. L., Golenetskii, S. V., Frederiks, D. D., Pal'shin, V. D., Goldsten, J., Boynton, W., Kozyrev, A. S., Rau, A., Kienlin, A. von, Zhang, X., Connaughton, V., Yamaoka, K., Ohno, M., Ohmori, N., Feroci, M., Frontera, F., Guidorzi, C., Cline, T., Gehrels, N., Krimm, H. A., McTiernan, J. 25 July 2016 (has links)
The detection of a gamma-ray burst (GRB) in the solar neighborhood would have very important implications for GRB phenomenology. The leading theories for cosmological GRBs would not be able to explain such events. The final bursts of evaporating primordial black holes (PBHs), however, would be a natural explanation for local GRBs. We present a novel technique that can constrain the distance to GRBs using detections from widely separated, non-imaging spacecraft. This method can determine the actual distance to the burst if it is local. We applied this method to constrain distances to a sample of 36 short-duration GRBs detected by the Interplanetary Network (IPN) that show observational properties that are expected from PBH evaporations. These bursts have minimum possible distances in the 10(13)-10(18) cm (7-10(5) au) range, which are consistent with the expected PBH energetics and with a possible origin in the solar neighborhood, although none of the bursts can be unambiguously demonstrated to be local. Assuming that these bursts are real PBH events, we estimate lower limits on the PBH burst evaporation rate in the solar neighborhood.
|
2 |
LONG FADING MID-INFRARED EMISSION IN TRANSIENT CORONAL LINE EMITTERS: DUST ECHO OF A TIDAL DISRUPTION FLAREDou, Liming, Wang, Ting-gui, Jiang, Ning, Yang, Chenwei, Lyu, Jianwei, Zhou, Hongyan 30 November 2016 (has links)
The sporadic accretion following the tidal disruption of a star by a super-massive black hole (TDE) leads to a bright. UV and soft X-ray flare in the galactic nucleus. The gas and dust surrounding the black hole responses to such a flare with an echo in emission lines and infrared emission. In this paper, we report the detection of long fading mid-IR emission lasting up to 14 years after the flare in four TDE candidates with transient coronal lines using the WISE public data release. We estimate that the reprocessed mid-IR luminosities are in the range between 4 x 10(42) and 2 x 10(43) erg s(-1) and dust temperature in the range of 570-800 K when WISE first detected these sources three to five years after the flare. Both luminosity and dust temperature decrease with time. We interpret the mid-IR emission as the infrared echo of the tidal disruption flare. We estimate the UV luminosity at the peak flare to be 1 to 30 times 10(44) erg s(-1) and that for. warm dust masses to be. in the range of 0.05-1.3 M-circle dot within a few parsecs. Our results suggest that the. mid-infrared echo is a general signature of TDE in the gas-rich environment.
|
3 |
A Dependence of the Tidal Disruption Event Rate on Global Stellar Surface Mass Density and Stellar Velocity DispersionGraur, Or, French, K. Decker, Zahid, H. Jabran, Guillochon, James, Mandel, Kaisey S., Auchettl, Katie, Zabludoff, Ann I. 22 January 2018 (has links)
The rate of tidal disruption events (TDEs), R-TDE, is predicted to depend on stellar conditions near the super-massive black hole (SMBH), which are on difficult-to-measure sub-parsec scales. We test whether R-TDE depends on kpc-scale global galaxy properties, which are observable. We concentrate on stellar surface mass density, Sigma M-*, and velocity dispersion, sigma(nu), which correlate with the stellar density and velocity dispersion of the stars around the SMBH. We consider 35 TDE candidates, with and without known X-ray emission. The hosts range from star-forming to quiescent to quiescent with strong Balmer absorption lines. The last (often with post-starburst spectra) are overrepresented in our sample by a factor of 35(-17)(+21) or 18(-7)(+8), depending on the strength of the H delta absorption line. For a subsample of hosts with homogeneous measurements, Sigma M-* = 10(9)-10(10) M-circle dot/kpc(2), higher on average than for a volume-weighted control sample of Sloan Digital Sky Survey galaxies with similar redshifts and stellar masses. This is because (1) most of the TDE hosts here are quiescent galaxies, which tend to have higher Sigma M-* than the star-forming galaxies that dominate the control, and (2) the star-forming hosts have higher average Sigma M-* than the star-forming control. There is also a weak suggestion that TDE hosts have lower sigma(nu) than for the quiescent control. Assuming that R-TDE infinity Sigma M-*(alpha) x sigma(beta)(nu), and applying a statistical model to the TDE hosts and control sample, we estimate (alpha) over cap = 0.9 +/- 0.2 and (beta) over cap = -1.0 +/- 0.6. This is broadly consistent with RTDE being tied to the dynamical relaxation of stars surrounding the SMBH.
|
4 |
FAR INFRARED VARIABILITY OF SAGITTARIUS A*: 25.5 hr OF MONITORING WITH HERSCHELStone, Jordan M., Marrone, D. P., Dowell, C. D., Schulz, B., Heinke, C. O., Yusef-Zadeh, F. 28 June 2016 (has links)
Variable emission from Sgr A*, the luminous counterpart to the super-massive black hole at the center of our Galaxy, arises from the innermost portions of the accretion flow. Better characterization of the variability is important for constraining models of the low-luminosity accretion mode powering Sgr A*, and could further our ability to use variable emission as a probe of the strong gravitational potential in the vicinity of the 4 x 10(6) M-circle dot black hole. We use the Herschel Spectral and Photometric Imaging Receiver (SPIRE) to monitor Sgr. A* at wavelengths that are difficult or impossible to observe from the ground. We find highly significant variations at 0.25, 0.35, and 0.5 mm, with temporal structure that is highly correlated across these wavelengths. While the variations correspond to < 1% changes in the total intensity in the Herschel beam containing Sgr. A*, comparison to independent, simultaneous observations at 0.85 mm strongly supports the reality of the variations. The lowest point in the light curves, similar to 0.5 Jy below the time-averaged flux density, places a lower bound on the emission of Sgr. A* at 0.25 mm, the first such constraint on the THz portion of the spectral energy distribution. The variability on few hour timescales in the SPIRE light curves is similar to that seen in historical 1.3 mm data, where the longest time series is available, but the distribution of variations in the sub-mm do not show a tail of large-amplitude variations seen at 1.3 mm. Simultaneous X-ray photometry from XMM-Newton shows no significant variation within our observing period, which may explain the lack of very large submillimeter variations in our data if X-ray and submillimeter flares are correlated.
|
5 |
Variability in GRMHD Simulations of Sgr A*: Implications for EHT Closure Phase ObservationsMedeiros, Lia, Chan, Chi-kwan, Özel, Feryal, Psaltis, Dimitrios, Kim, Junhan, Marrone, Daniel P., Sa̧dowski, Aleksander 19 July 2017 (has links)
Closure phases along different baseline triangles carry a large amount of information regarding the structures of the images of black holes in interferometric observations with the Event Horizon Telescope. We use long time span, high cadence, GRMHD+radiative transfer models of Sgr A* to investigate the expected variability of closure phases in such observations. We find that, in general, closure phases along small baseline triangles show little variability, except in the cases when one of the triangle vertices crosses one of the small regions of low visibility amplitude. The closure phase variability increases with the size of the baseline triangle, as larger baselines probe the small-scale structures of the images, which are highly variable. On average, the funnel-dominated MAD models show less closure phase variability than the disk-dominated SANE models, even in the large baseline triangles, because the images from the latter are more sensitive to the turbulence in the accretion flow. Our results suggest that image reconstruction techniques need to explicitly take into account the closure phase variability, especially if the quality and quantity of data allow for a detailed characterization of the nature of variability. This also implies that, if image reconstruction techniques that rely on the assumption of a static image are utilized, regions of the u-v space that show a high level of variability will need to be identified and excised.
|
6 |
Collapsar accretion and the gamma-ray burst X-ray light curveLindner, Christopher Carl 02 November 2010 (has links)
We present axisymmetric hydrodynamical simulations of the long-term accretion of a rotating gamma-ray burst progenitor star, a "collapsar," onto the central compact object, which we take to be a black hole. The simulations were carried out with the adaptive mesh refinement code FLASH in two spatial dimensions and with an explicit shear viscosity. The evolution of the central accretion rate exhibits phases reminiscent of the long GRB [gamma]-ray and X-ray light curve, which lends support to the proposal by Kumar et al. (2008a,b) that the luminosity is modulated by the central accretion rate. In the first "prompt" phase, the black hole acquires most of its final mass through supersonic quasiradial accretion occurring at a steady rate of [scientific symbols]. After a few tens of seconds, an accretion shock sweeps outward through the star. The formation and outward expansion of the accretion shock is accompanied with a sudden and rapid power-law decline in the central accretion rate Ṁ [proportional to] t⁻²̇⁸, which resembles the L[subscript x] [proportional to] t⁻³ decline observed in the X-ray light curves. The collapsed, shock-heated stellar envelope settles into a thick, low-mass equatorial disk embedded within a massive, pressure-supported atmosphere. After a few hundred seconds, the inflow of low-angular-momentum material in the axial funnel reverses into an outflow from the thick disk. Meanwhile, the rapid decline of the accretion rate slows down, which is potentially suggestive of the "plateau" phase in the X-ray light curve. We complement our adiabatic simulations with an analytical model that takes into account the cooling by neutrino emission and estimate that the duration of the prompt phase can be ~ 20 s. The model suggests that the steep decline in GRB X-ray light curves is triggered by the circularization of the infalling stellar envelope at radii where the virial temperature is below 10¹⁰ K, such that neutrino cooling is inefficient and an outward expansion of the accretion shock becomes imminent; GRBs with longer prompt [gamma]-ray emission should have more slowly rotating envelopes. / text
|
7 |
Testing General Relativity in the Strong-Field Regime with Observations of Black Holes in the Electromagnetic SpectrumJohannsen, Tim January 2012 (has links)
General relativity has been tested by many experiments, which, however, almost exclusively probe weak spacetime curvatures. In this thesis, I create two frameworks for testing general relativity in the strong-field regime with observations of black holes in the electromagnetic spectrum using current or near-future instruments. In the first part, I design tests of the no-hair theorem, which uniquely characterizes the nature of black holes in terms of their masses and spins in general relativity and which states that these compact objects are described by the Kerr metric. I investigate a quasi-Kerr metric and construct a Kerr-like spacetime, both of which contain an independent parameter in addition to mass and spin. If the no-hair theorem is correct, then any deviation from the Kerr metric has to be zero. I show that already moderate changes of the deviation parameters in either metric lead to significant modifications of the observed signals. First, I apply this framework to the imaging of supermassive black holes using very-long baseline interferometry. I show that the shadow of a black hole as well as the shape of a bright and narrow ring surrounding the shadow depend uniquely on its mass, spin, inclination, and the deviation parameter. I argue that the no-hair theorem can be tested with observations of the supermassive black hole Sgr A*. Second, I investigate the potential of quasi-periodic variability observed in both galactic black holes and active galactic nuclei to test the no-hair theorem in two different scenarios. Third, I show that the profiles of relativistically broadened iron lines emitted from the accretion disks of black holes imprint the signatures of deviations from the Kerr metric. In the second part, I devise a method to test the predicted evaporation of black holes in the Randall-Sundrum model of string theory-inspired braneworld gravity through the orbital evolution of black-hole X-ray binaries and obtain constraints on the size of the extra dimension from A0620-00 and XTE J1118+480. I predict the first detection of orbital evolution in a black-hole binary.
|
8 |
BAYESIAN TECHNIQUES FOR COMPARING TIME-DEPENDENT GRMHD SIMULATIONS TO VARIABLE EVENT HORIZON TELESCOPE OBSERVATIONSKim, Junhan, Marrone, Daniel P., Chan, Chi-Kwan, Medeiros, Lia, Özel, Feryal, Psaltis, Dimitrios 29 November 2016 (has links)
The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long-baseline interferometry (VLBI) experiment that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius. A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. We develop here a Bayesian method to compare time-resolved simulation images to variable VLBI data, in order to infer model parameters and perform model comparisons. We use mock EHT data based on GRMHD simulations to explore the robustness of this Bayesian method and contrast it to approaches that do not consider the effects of variability. We find that time-independent models lead to offset values of the inferred parameters with artificially reduced uncertainties. Moreover, neglecting the variability in the data and the models often leads to erroneous model selections. We finally apply our method to the early EHT data on Sgr A*.
|
9 |
PARTICLE ACCELERATION AND THE ORIGIN OF X-RAY FLARES IN GRMHD SIMULATIONS OF SGR A*Ball, David, Özel, Feryal, Psaltis, Dimitrios, Chan, Chi-kwan 25 July 2016 (has links)
Significant X-ray variability and flaring has been observed from Sgr A* but is poorly understood from a theoretical standpoint. We perform general relativistic magnetohydrodynamic simulations that take into account a population of non-thermal electrons with energy distributions and injection rates that are motivated by PIC simulations of magnetic reconnection. We explore the effects of including these non-thermal electrons on the predicted broadband variability of Sgr A* and find that X-ray variability is a generic result of localizing non-thermal electrons to highly magnetized regions, where particles are likely to be accelerated via magnetic reconnection. The proximity of these high-field regions to the event horizon forms a natural connection between IR and X-ray variability and accounts for the rapid timescales associated with the X-ray flares. The qualitative nature of this variability is consistent with observations, producing X-ray flares that are always coincident with IR flares, but not vice versa, i.e., there are a number of IR flares without X-ray counterparts.
|
10 |
SPECTRAL EVOLUTION IN HIGH REDSHIFT QUASARS FROM THE FINAL BARYON OSCILLATION SPECTROSCOPIC SURVEY SAMPLEJensen, Trey W., Vivek, M., Dawson, Kyle S., Anderson, Scott F., Bautista, Julian, Bizyaev, Dmitry, Brandt, William N., Brownstein, Joel R., Green, Paul, Harris, David W., Kamble, Vikrant, McGreer, Ian D., Merloni, Andrea, Myers, Adam, Oravetz, Daniel, Pan, Kaike, Pâris, Isabelle, Schneider, Donald P., Simmons, Audrey, Suzuki, Nao 19 December 2016 (has links)
We report on the diversity in quasar spectra from the Baryon Oscillation Spectroscopic Survey. After filtering the spectra to mitigate selection effects and Malmquist bias associated with a nearly flux-limited sample, we create high signal-to-noise ratio composite spectra from 58,656 quasars (2.1 <= z <= 3.5), binned by luminosity, spectral index, and redshift. With these composite spectra, we confirm the traditional Baldwin effect (BE, i. e., the anticorrelation of C IV equivalent width ( EW) and luminosity) that follows the relation W-lambda alpha L-beta w with slope beta(w) = -0.35 +/- 0.004, -0.35 +/- 0.005, and -0.41 +/- 0.005 for z. =. 2.25, 2.46, and 2.84, respectively. In addition to the redshift evolution in the slope of the BE, we find redshift evolution in average quasar spectral features at fixed luminosity. The spectroscopic signature of the redshift evolution is correlated at 98% with the signature of varying luminosity, indicating that they arise from the same physical mechanism. At a fixed luminosity, the average C IV FWHM decreases with increasing redshift and is anti-correlated with C IV EW. The spectroscopic signature associated with C IV FWHM suggests that the trends in luminosity and redshift are likely caused by a superposition of effects that are related to black hole mass and Eddington ratio. The redshift evolution is the consequence of a changing balance between these two quantities as quasars evolve toward a population with lower typical accretion rates at a given black hole mass.
|
Page generated in 0.0725 seconds