• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of blast furnace lining/cooling systems using computational fluid dynamics

Joubert, Hugo 07 September 2012 (has links)
M.Ing. / In this study it is shown that numerical analysis, and more specifically computational fluid dynamics can be used to investigate, compare, predict and design lining/cooling system combinations for blast furnaces’ in order to ensure longer campaign life and better performance. Three currently available cooling systems namely, copper staves are investigated. These combined with four different refractory materials, namely high alumina, silicon carbide, semi-graphite and graphite, stated in order of increasing thermal conductivity.
2

Thermal shock resistance parameters for the industrial lining problem

Bradley, Frederick Joseph January 1985 (has links)
A two-dimensional constant heating rate thermoelastic model has been used to develop design and selection criteria for refractory components of linings of high-temperature furnaces and process vessels. The criteria are in the form of resistance to fracture initiation and resistance to damage parameters which account for the influence of thermal and mechanical properties, geometry, and temperature range, while distinguishing between the heating and cooling cases. The resistance to fracture initiation parameter ɸs is the maximum rate at which a shape can be heated or cooled through a specified temperature range without causing fracture. The damage resistance parameter Rd is expressed as the ratio of surface energy per unit area to the elastic strain energy available for crack propagation. Both parameters can be quickly estimated for arbitrary conditions with the aid of tabulated solutions for the maximum principal tensile stress and total strain energy Thermoelastic analyses were used to interpret published results of a variety of thermal shock experiments. Thermal conditions associated with water quenching, radiative furnace heating, gas burners, and controlled heating were simulated using appropriate analytical solutions. Finite element analysis was used to compute maximum principal tensile stresses and elastic strain energy. A simple procedure was developed to invert the stress solution and thereby determine the instant of fracture. Good agreement between thermoelastic predictions and published experimental results with regard to strength retained versus thermal shock relationships, location of fracture, and safe heating rates provided justification for a thermoelastic approach to the thermal shock. / Applied Science, Faculty of / Mining Engineering, Keevil Institute of / Graduate

Page generated in 0.0843 seconds