• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear Fluid-Structure Interaction in a Flexible Shelter under Blast Loading

Chun, Sangeon 03 December 2004 (has links)
Recently, numerous flexible structures have been employed in various fields of industry. Loading conditions sustained by these flexible structures are often not described well enough for engineering analyses even though these conditions are important. Here, a flexible tent with an interior Collective Protection System, which is subjected to an explosion, is analyzed. The tent protects personnel from biological and chemical agents with a pressurized liner inside the tent as an environmental barrier. Field tests showed unexpected damage to the liner, and most of the damage occurred on tent's leeward side. To solve this problem, various tests and analyses have been performed, involving material characteristics of the liner, canvas, and zip seals, modeling of the blast loading over the tent and inside the tent, and structural response of the tent to the blast loading as collaborative research works with others. It was found that the blast loading and the structural response can not be analyzed separately due to the interaction between the flexible structure and the dynamic pressure loading. In this dissertation, the dynamic loadings imposed on both the interior and the exterior sides of the tent structure due to the airblasts and the resulting dynamic responses were studied. First, the blast loadings were obtained by a newly proposed theoretical method of analytical/empirical models which was developed into a FORTRAN program. Then, a numerical method of an iterative Fluid-Structure Interaction using Computational Fluid Dynamics and Computational Structural Dynamics was employed to simulate the blast wave propagation inside and outside the flexible structure and to calculate the dynamic loads on it. All the results were compared with the field test data conducted by the Air Force Research Laboratory. The experimental pressure data were gathered from pressure gauges attached to the tent surfaces at different locations. The comparison showed that the proposed methods can be a good design tool to analyze the loading conditions for rigid or flexible structures under explosive loads. In particular, the causes of the failure of the liner on the leeward were explained. Also, the results showed that the effect of fluid-structure interaction should be considered in the pressure load calculation on the structure where the structural deflection rate can influence the solution of the flow field surrounding the structure. / Ph. D.
2

Micro-Blast Waves

Obed Samuelraj, I 12 1900 (has links) (PDF)
The near field blast–wave propagation dynamics has been a subject of intense research in recent past. Since experiments on a large scale are difficult to carry out, focus has been directed towards recreating these blast waves inside the laboratory by expending minuscule amounts of energy(few joules),which have been termed here as micro–blast waves. In the present study, micro-blast waves are generated from the open end of a small diameter polymer tube (Inner Diameter of 1.3 mm)coated on its inner side with negligible amounts of HMX explosive (~18 mg/m), along with traces of aluminium powder. Experimental, numerical, and analytical approaches have been adopted in this investigation to understand the generation and subsequent propagation of these micro–blast waves in the open domain. Time–resolved schlieren flow visualization experiments, using a high speed digital camera, and dynamic pressure measurements (head–on and side–on pressures) have been carried out. Quasi one dimensional numerical modeling of the detonation process inside the tube, has been carried out by considering the reaction kinetics of a single(HMX) reaction to account for the reaction dynamics of HMX. The one dimensional numerical model is then coupled to a commercial Navier– Stokes equation solver to understand the propagation of the blast wave from the open end of the tube. A theory that is valid for large scale explosions of intermediate strength was then used for the first time to understand the propagation dynamics of these micro–blast waves. From the experiments, the trajectory of the blast wave was mapped, and its initial Mach number was found to be about 3.7. The side–on overpressure was found to be 5.5 psi at a distance of 20 mm from the tube, along an axis, offset by 30 mm from the tube axis. These values were found to compare quite well with the numerically obtained data in the open domain. From the numerical model of the tube, the energy in the blast wave was inferred to be 1.5 J. This value was then used in the analytical theory and excellent correlation was obtained, suggesting the exciting possibility of using such theories, validated for large-scale explosions, to describe these micro–blasts. Considering the uncertainties in the approximate model, a better estimate of energy was obtained by working back the energy(using the analytical model) from the trajectory data as 1.25 J. The average TNT equivalent, a measure of its strength relative to a TNT explosion, was found to be 0.3. A few benchmark experiments, demonstrating the capability of this novel blast device have also been done by comparing them against the extant large–scale explosion database, suggesting the possibility of using these micro–blast waves to study certain aspects of large–scale explosions.

Page generated in 0.0978 seconds