• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 28
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 139
  • 32
  • 31
  • 27
  • 20
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Elucidating the corrosion performance of type 316L stainless steel product storage cans

Krawczyk, Benjamin January 2018 (has links)
Re-processed oxide fuel product from the Thermal Oxide Reprocessing Plant (THORP) is stored in Type 316L stainless steel, using a design of several nested cans, with the outer can providing the safety case containment barrier. The research reported in this PhD thesis aims to support the safety case related to these storage cans, by identifying and characterising susceptible microstructure sites and associated material surface conditions. The overarching goal of this project is to understand the propensity of THORP storage cans towards localised corrosion and Environment Assisted Cracking (EAC) in HCl and chloride-bearing atmospheric environments. The investigation focused on two possible corrosion cases: (1) understanding the effect of surface finishing on material performance in chloride-containing atmospheric environments, and (2) characterising the effects of the HCl aqueous solutions inside the can, with potential formation of HCl vapour. Microstructure investigations were carried out on surface-treated type 316L coupon specimens. The application of aqua blasting resulted in a deformed near-surface microstructure, containing compressive residual stresses to a depth of 100-120 micrometres. Subsequent laser engraving produced a recrystallized surface layer with tensile residual stresses reaching to a depth of 200 micrometres. Changes of surface roughness topography were accompanied by the development of a thick oxide/hydroxide film after laser engraving. Atmospheric exposure revealed similar corrosion attack for all samples, with laser engraving exhibiting the lowest number of corrosion sites, but with the largest average depth of attack. In addition, laser engraving led to atmospheric-induced stress corrosion cracking (AISCC) within two weeks of exposure to 386 ug/cm2 MgCl2-laden droplet deposits, with crack growth rates similar to ground U-bend samples. Strategies to reduce the likelihood of AISCC of laser-engraved components are discussed. The influence of HCl concentration and exposure temperature on the corrosion type and rate of annealed and cold rolled type 316L stainless steel has also been investigated. Cold rolling of up to 20 % reduction was introduced, with potentio-dynamic polarization measurements conducted in 0.01 - 3 M HCl aqueous solution. Results are compared to microstructures immersed under open circuit conditions, and to HCl-laden droplet deposits at temperatures up to 80C. Corrosion type diagrams are introduced to describe the transition between uniform corrosion, mixed-mode uniform with pitting corrosion, and pitting corrosion only, as a function of temperature, HCl concentration, and cold deformation. SCC tests of type 316L stainless steel have been carried out at 110C, by exposing U-Bend samples to HCl-laden droplets and HCl vapour. The humidity of the environment was controlled using defined volume fractions of H2O in a sealed environmental chamber. HCl-laden droplets with chloride deposition densities exceeding 1.5 ug/cm2 led to SCC after 90 minutes of exposure, whereas no corrosion attack was observed for samples with exposure to 0.15 ug/cm2 HCl. Increasing HCl concentrations resulted in fewer, but longer cracks, reaching up-to several hundreds of micrometres in length. HCl vapour exposure was carried out by adding various volumes of HCl solution in a beaker to the sealed test chambers. These HCl vapour tests confirmed a change of corrosion type with HCl concentration, from pitting corrosion with SCC, to the occurrence of uniform corrosion.
112

Interactions between titanium surfaces and biological components

Pegueroles Neyra, Marta 16 September 2009 (has links)
El conocimiento de las interacciones entre célula/proteína/biomaterial es fundamental para la ingeniería de superficies debido a las numerosas aplicaciones biomédicas y biotecnológicas que se están desarrollando así como al éxito clínico que han alcanzado muchos implantes. La respuesta biológica final inducida por los implantes está fuertemente influenciada por las interacciones superficiales entre los componentes biológicos y el material sintético. Las propiedades físicas y químicas de la superficie de un biomaterial, en lugar de las propiedades en su masa, influyen directamente en la capa de proteínas que se adsorben sobre el biomaterial y, como consecuencia de ello, en la respuesta celular a la misma, tanto in vitro como in vivo.El objetivo de esta tesis doctoral es profundizar en el conocimiento de las interacciones material-biosistema, con el énfasis en el descubrimiento de relaciones entre las propiedades superficiales de las superficies de titanio y su respuesta biológica in vitro.El titanio comercialmente puro (Ti c.p.) está siendo ampliamente utilizado con éxito durante muchos años como biomaterial para implantes en cirugía ósea. Su excelente biocompatibilidad se basa en sus adecuadas propiedades mecánicas y, con mayor importancia, en su excelente resistencia a la corrosión. Esta última se debe principalmente a la formación espontanea de una fina película de óxido de titanio que le confiere protección natural contra los ataques degradativos. La modificación de la topografía de la superficie del titanio ha sido objeto de investigación en el pasado con el fin de mejorar la osteointegración. El granallado de partículas es una de las tecnologías más utilizadas para conferir rugosidad a las superficies del titanio. La rugosidad óptima y el tipo de partículas abrasivas del granallado para una respuesta óptima in vitro e in vivo fue previamente determinada en nuestro laboratorio. Sin embargo, todavía están por determinar cuáles son las causas últimas que llevan al biomaterial a su exitosa respuesta biológica.En este trabajo se han estudiado superficies pulidas y rugosas de Ti c.p. obtenidas mediante el granallado con partículas abrasivas de diferente composición química(Al2O3 y SiC) y diferentes tamaños (212-300μm; 425-600μm; 1000-1400μm). La completa caracterización de las propiedades física y química de la superficie, incluyendo la rugosidad, la composición química, la mojabilidad/energía libre y la carga eléctrica de las superficies ensayadas ha llevado a una serie de relevantes conclusiones. Entre ellas, cabe destacar que a) la composición química de las partículas de granallado, así como el método de esterilización fueron los principales factores que influyeron en la mojabilidad y la energía libre superficial de las superficies de titanio estudiadas, b) el método de esterilización cambió en la energía superficial el carácter de donante de electrones de las superficies mediante el cambio de la cantidad y la naturaleza de las sustancias adsorbidas, y c) la composición química de las partículas de granallado no influyó en la carga eléctrica a pH fisiológico ni en el punto isoeléctrico de las superficies.Un segundo paso consistió en el uso de una microbalanza de cristal de cuarzo con monitorización de la energía de disipación, para el estudio de la cinética de adsorción (cantidad y conformación) y de los procesos de adsorción competitiva de tres proteínas de especial interés en los procesos de curación del hueso - la albúmina de suero bovino (BSA), el fibrinógeno (Fbg), y la fibronectina (Fn)- en sensores lisos recubiertos de TiO2. Se determinaron diferentes modelos de procesos de adsorción con una, dos o múltiples pasos distinguibles en función de las proteínas en solución. La capa adsorbida de BSA mostró los cambios más significativos en sus propiedades mecánicas, de conformación y de incorporación de agua hasta que se alcanzaron las condiciones estables de adsorción de proteínas. La BSA, la más pequeña de las proteínas ensayadas, desplazó la Fn y el Fbg cuando se ensayó en condiciones de la competencia por la adsorción, indicando su mayor afinidad por las superficies de TiO2. También se emplearon técnicas de marcaje fluorescente para el estudio de la adsorción proteica en superficies rugosas granalladas. En este estudio, por un parte, se pudo determinar que la cantidad de Fn y BSA adsorbidas en las superficies granalladas está directamente correlacionada con su energía superficial. Por otra parte, se visualizó la adsorción de fibronectina en solución sobre muestras granalladas rugosas de Ti. La Fn formó un patrón irregular de adsorción con una mayor cantidad de proteína adsorbida en los picos que en los valles de la topografía.También se evaluó la organización espacial de la matriz extracelular de los osteoblastos, ECM, sobre superficies de Ti lisas y rugosas por medio de la visualización de las fibrillas de Fn teñidas con marcador fluorescente. Las células osteoblásticas depositaron las fibrillas de Fn con un determinado patrón organizado dentro de la matriz total secretada. Aparecen como una película que cubre la parte superior de las diferentes superficies rugosas de titanio. Un resultado relevante es que el espesor de esta capa aumentó con la rugosidad de la topografía subyacente. Sin embargo no más de la mitad de la máxima distancia pico-valle se cubrió con la proteína secretada y/o reorganizada.Por último, teniendo en cuenta las diferencias en la organización de la ECM y laadsorción de Fn en las superficies ensayadas de Ti, se realizó un estudio de qRT-PCR para determinar la influencia de las propiedades superficiales del titanio, con y sin preadsorción de Fn, en la respuesta osteoblástica. La expresión génica de la subunidad 5 de la integrina celular, como marcador de la adhesión celular, se incrementó en las superficies granalladas con SiC en comparación con las granalladas con alúmina. Este resultado fue correlacionado con la mayor cantidad de Fn adsorbida debido a la mayor energía superficial de las superficies granalladas con SiC. El aumento de la rugosidad, así como la presencia de partículas de alúmina en las superficies rugosas incrementó la actividad de ALP y la expresión génica de ALP mRNA por los osteoblastos, y por lo tanto su diferenciación. / The understanding of cell/protein/biomaterial interactions is critical to the engineering of substrates for numerous biomedical and biotechnological applications and to the clinical success of implants. The final biological response induced by implants is strongly influenced by the biological-components/synthetic-material surface interactions. It is well accepted that the physical and chemical surface properties of a biomaterial rather than its bulk properties will influence the protein adlayer and then the cell response to it, both in vitro and in vivo.The aim of this PhD thesis is to gain an increased understanding of the materialbiosystem interactions, with an emphasis on establishing correlations between surface properties of titanium surfaces and its in vitro biological response.Commercially pure titanium (c.p. Ti) is being widely and successfully used implant biomaterial in bone surgery over many years. Its excellent biocompatibility is based in its appropriate mechanical properties and, more importantly, in its excellent corrosion resistance, which is mainly due to the presence of a naturally-occurring thin protective titanium oxide film. Modification of titanium surface topography has been a subject of research in the past with the purpose of improving its osseointegration. Grit blasting is one of the most used technologies to roughen titanium surfaces for this purpose. The optimal roughness and type of abrasive blasting-particles for a better in vitro and in vivo response was previously determined in our lab. However, which and how different relevant surface properties of the blasted titanium surfaces induce that optimal biological behavior is still poorly understood.Smooth/polished and rough c.p. Ti surfaces obtained by blasting with abrasiveparticles of different chemical composition (Al2O3 and SiC) and different sizes (212-300μm; 425-600μm; 1000-1400μm) were studied. The comprehensive characterization of physical and chemical surface properties, including roughness, chemical composition, wettability/free energy and electrical charge of the tested surfaces led to a series of relevant conclusions. Among them, it is worth noting that a) the chemical composition of the grit-blasting particles as well as the method of sterilization were found the main factors influencing wettability and surface free energy of the titanium surfaces; b) the sterilization method changed the electron donor character of the surfaces by changing the amount/nature of physisorbed substances on the surfaces, and c) the chemical composition of the blasting particles did not influence on the electrical charge at physiological pH and the isoelectric point of the surfaces.A second step consisted in the use of a quartz crystal microbalance with monitoring of the energy dissipation to study the adsorption kinetics (amount and conformation) and adsorption competition processes of three proteins of special interest in the healing processes of bone -bovine serum albumin (BSA), fibrinogen (Fbg), and fibronectin (Fn)-on smooth TiO2-coated sensors. Different patterns of adsorption with processes in one, two or multiple distinguishable steps were determined depending of the protein in solution. The BSA adlayers showed the most significant changes in their mechanical properties/conformation/incorporation of water until steady protein-adsorption conditions were reached. BSA, the smallest of the tested proteins, displaced Fn and Fbg when in competition for adsorption, which is an indication of its higher affinity for TiO2 surfaces. Fluorescent labelling techniques where used to study protein adsorption on blasted rough surfaces. Most significantly, the amount of Fn and BSA adsorbed on blasted surfaces was positively correlated with their surface energy. The adsorption of fibronectin from solution on shot-blasted rough titanium surfaces resulted in an irregular pattern of adsorption with a higher amount of protein adsorbed on peaks than on valleys of the topography.Further, the spatial organization of the osteoblast extracellular matrix, ECM, on smooth and rough Ti surfaces was evaluated by visualizing fluorescently-stained Fn-fibrils. Osteoblast-like cells deposited Fn- fibrils in a specific facet-like pattern that was organized within the secreted total matrix. It appeared as a film overlying the top of the different rough titanium surfaces. Interestingly, the thickness of this layer increased with the roughness of the underlying topography, but no more than half of the total maximum peak-to-alley distance was covered.Finally, taking into consideration the differences in ECM organization and Fn adsorption on the tested Ti surfaces a qRT-PCR study was carried out to elucidate the influence of titanium surface properties with and without Fn-precoatings on the osteoblast response. The expression of 5 integrin subunit gene, as a marker for cell adhesion, was increased in SiC-blasted surfaces compared to alumina-blasted surfaces. This was related to the higher amount of adhesive-protein Fn adsorbed caused by the higher surface energy of SiC-blasted surfaces. The increase of roughness as well as the presence of alumina particles on blasted surfaces increased ALP activity and ALP mRNA gene expression by osteoblasts, and so their differentiation.This research work contribute to increase our knowledge on the interactions taking place at the bio/non-bio interface between different biological components -water, proteins, cells- and materials of clinical relevance, such as rough titanium. Theintertwined effects of the different properties of the synthetic surfaces appear as a challenge to unravel the ultimate causes that determine the fate of cells on synthetic biomaterials.
113

Geochemical and microbiological characterization of effluent and pore water from low-sulfide content waste rock

Bailey, Brenda Lee 15 April 2013 (has links)
Laboratory and field studies were completed to characterize the geochemistry and microbiology of drainage emanating from low-S content waste-rock test piles at the Diavik Diamond Mine (Diavik) from 2007 through 2010. The potential use of small-scale laboratory humidity-cell experiments to predict the water quality from larger-scale field-based experiments also was examined. Waste rock at Diavik is segregated into three categories according to sulfide content: Type I (target concentration: < 0.04 wt. % S), Type II (target concentration: 0.04 to 0.08 wt. % S) and Type III (target concentration: > 0.08 wt. % S). Four high-density polyethylene tanks, 2 m in diameter by 2 m in height, were filled with and surrounded by waste rock (active zone lysimeters; AZLs) at the Diavik site to study the upper 2 m of the active zone within a waste-rock pile and to evaluate the quality of effluent released from waste rock with differing S contents (Type I AZLs: 0.014 wt. % S and Type III AZLs: 0.035 wt. % S). In addition, three waste-rock test piles also were constructed at Diavik, two uncovered test piles (Type I test pile: 0.035 wt. % S and Type III test pile: 0.053 wt. % S) and a third pile was constructed based on the mine-closure plan which consists of waste rock (Type III: 0.082 wt. % S) capped with a 1.5 m layer of till and a 3 m layer of Type I material (Covered test pile). Each test pile is underlain by a high-density polyethylene geomembrane that captures and directs water to outflow drains. Results show that the release and transport of blasting residuals could be used as a resident tracer, indicating the first flush of water through the AZLs and the test piles. Variations in concentrations of blasting residuals and the gradual rate of dissipation provide an indication of the heterogeneity of the distribution of blasting residuals and the relative contributions of water and solutes from different flow paths. As temperatures within the test piles increase in response to ambient air temperature increases, larger proportions of the test pile contributed to the outflow, and increased concentrations of blasting residuals were observed in waste-rock test pile effluent. Effluent from the Type I AZLs and test pile maintained near-neutral pH (ranged from 5.8 to 8) with concentrations of SO₄²⁻ < 500 mg L⁻¹. These results suggest that the near-neutral pH values were associated with the presence of carbonates in the waste rock and the lack of intense acid generation. As ambient air temperatures increased in spring and summer of each year, the measured pH in the Type III test-pile drainage decreased from near-neutral in May (pH 7.5) to acidic conditions by October (ranged from 5 to 4.5). As the pH in the Type III test pile decreased, concentrations of SO₄²⁻ and dissolved metals increased (e.g. SO₄²⁻ > 1500 mg L⁻¹) suggesting sulfide oxidation was occurring. Maximum concentrations of SO₄²⁻, Al, Zn, Ni, Co, and Cu were observed in 2009 during the first flush of water through the Type III test pile. A sequence of acid-neutralization reactions was inferred based on the water chemistry of the effluent derived from the Type III AZLs and waste-rock test pile. This acid-neutralization sequence is similar to those observed at other AMD impacted sites. A series of mineral dissolution-precipitation reactions controlled pH and metal mobility; carbonate-mineral dissolution consumed H⁺ generated from sulfide-mineral oxidation at near neutral pH and the dissolution of Al and Fe (oxy)hydroxides consumed H⁺ at pH < 5.0. The cover system on the Covered test pile dampened the effects of ambient air temperature on the internal temperatures within the core of the Covered test pile. As a result, the Covered test pile had a relatively steady change in flow rate, with decreased flow from June to August, which led to a slow but prolonged release of sulfide-mineral oxidation products, such as SO₄²⁻ and dissolved metals, including Ni, Co, Zn, Cd, and Cu, compared to the uncovered Type III test pile. The pH decreased in 2008 and remained low for the duration of the study, whereas the pH in the uncovered test pile was near-neutral at the beginning of each field season in May and decreased to < 4.2 by the end of the field season in November. The microbiological-community profiles observed in the AZLs and waste-rock test piles suggest typical AMD-related species were present in acidic effluent with elevated concentrations of metals, whereas typical soil microbes were present in effluent with a near-neutral pH and lower concentrations of SO₄²⁻ and dissolved metals. The Type III AZLs, Type III test pile, and Covered test pile maintained populations of acidophilic Fe-oxidizers, whereas, the Type I AZLs and Type I test pile maintained populations of neutrophilic S-oxidizers. Laboratory humidity-cell (1 kg) results were scaled up to estimate the water quality from the Type III AZLs (6 t) using measured physical and chemical parameters. The results suggested over-prediction of SO₄²⁻ and metal concentrations when low mean annual precipitation occurred, limiting flushing of predicted oxidation products. In subsequent years with higher mean annual precipitation oxidation products from previous years were liberated and resulted in the under prediction of SO₄²⁻ and metal concentrations. Additionally, Fe and Al were over-predicted because Fe and Al concentrations in the AZL effluent may be controlled by the solubility and formation of secondary minerals, such as Fe oxyhydroxides, jarosite, and goethite, which were not included in the scaling procedure.
114

Geochemical and microbiological characterization of effluent and pore water from low-sulfide content waste rock

Bailey, Brenda Lee 15 April 2013 (has links)
Laboratory and field studies were completed to characterize the geochemistry and microbiology of drainage emanating from low-S content waste-rock test piles at the Diavik Diamond Mine (Diavik) from 2007 through 2010. The potential use of small-scale laboratory humidity-cell experiments to predict the water quality from larger-scale field-based experiments also was examined. Waste rock at Diavik is segregated into three categories according to sulfide content: Type I (target concentration: < 0.04 wt. % S), Type II (target concentration: 0.04 to 0.08 wt. % S) and Type III (target concentration: > 0.08 wt. % S). Four high-density polyethylene tanks, 2 m in diameter by 2 m in height, were filled with and surrounded by waste rock (active zone lysimeters; AZLs) at the Diavik site to study the upper 2 m of the active zone within a waste-rock pile and to evaluate the quality of effluent released from waste rock with differing S contents (Type I AZLs: 0.014 wt. % S and Type III AZLs: 0.035 wt. % S). In addition, three waste-rock test piles also were constructed at Diavik, two uncovered test piles (Type I test pile: 0.035 wt. % S and Type III test pile: 0.053 wt. % S) and a third pile was constructed based on the mine-closure plan which consists of waste rock (Type III: 0.082 wt. % S) capped with a 1.5 m layer of till and a 3 m layer of Type I material (Covered test pile). Each test pile is underlain by a high-density polyethylene geomembrane that captures and directs water to outflow drains. Results show that the release and transport of blasting residuals could be used as a resident tracer, indicating the first flush of water through the AZLs and the test piles. Variations in concentrations of blasting residuals and the gradual rate of dissipation provide an indication of the heterogeneity of the distribution of blasting residuals and the relative contributions of water and solutes from different flow paths. As temperatures within the test piles increase in response to ambient air temperature increases, larger proportions of the test pile contributed to the outflow, and increased concentrations of blasting residuals were observed in waste-rock test pile effluent. Effluent from the Type I AZLs and test pile maintained near-neutral pH (ranged from 5.8 to 8) with concentrations of SO₄²⁻ < 500 mg L⁻¹. These results suggest that the near-neutral pH values were associated with the presence of carbonates in the waste rock and the lack of intense acid generation. As ambient air temperatures increased in spring and summer of each year, the measured pH in the Type III test-pile drainage decreased from near-neutral in May (pH 7.5) to acidic conditions by October (ranged from 5 to 4.5). As the pH in the Type III test pile decreased, concentrations of SO₄²⁻ and dissolved metals increased (e.g. SO₄²⁻ > 1500 mg L⁻¹) suggesting sulfide oxidation was occurring. Maximum concentrations of SO₄²⁻, Al, Zn, Ni, Co, and Cu were observed in 2009 during the first flush of water through the Type III test pile. A sequence of acid-neutralization reactions was inferred based on the water chemistry of the effluent derived from the Type III AZLs and waste-rock test pile. This acid-neutralization sequence is similar to those observed at other AMD impacted sites. A series of mineral dissolution-precipitation reactions controlled pH and metal mobility; carbonate-mineral dissolution consumed H⁺ generated from sulfide-mineral oxidation at near neutral pH and the dissolution of Al and Fe (oxy)hydroxides consumed H⁺ at pH < 5.0. The cover system on the Covered test pile dampened the effects of ambient air temperature on the internal temperatures within the core of the Covered test pile. As a result, the Covered test pile had a relatively steady change in flow rate, with decreased flow from June to August, which led to a slow but prolonged release of sulfide-mineral oxidation products, such as SO₄²⁻ and dissolved metals, including Ni, Co, Zn, Cd, and Cu, compared to the uncovered Type III test pile. The pH decreased in 2008 and remained low for the duration of the study, whereas the pH in the uncovered test pile was near-neutral at the beginning of each field season in May and decreased to < 4.2 by the end of the field season in November. The microbiological-community profiles observed in the AZLs and waste-rock test piles suggest typical AMD-related species were present in acidic effluent with elevated concentrations of metals, whereas typical soil microbes were present in effluent with a near-neutral pH and lower concentrations of SO₄²⁻ and dissolved metals. The Type III AZLs, Type III test pile, and Covered test pile maintained populations of acidophilic Fe-oxidizers, whereas, the Type I AZLs and Type I test pile maintained populations of neutrophilic S-oxidizers. Laboratory humidity-cell (1 kg) results were scaled up to estimate the water quality from the Type III AZLs (6 t) using measured physical and chemical parameters. The results suggested over-prediction of SO₄²⁻ and metal concentrations when low mean annual precipitation occurred, limiting flushing of predicted oxidation products. In subsequent years with higher mean annual precipitation oxidation products from previous years were liberated and resulted in the under prediction of SO₄²⁻ and metal concentrations. Additionally, Fe and Al were over-predicted because Fe and Al concentrations in the AZL effluent may be controlled by the solubility and formation of secondary minerals, such as Fe oxyhydroxides, jarosite, and goethite, which were not included in the scaling procedure.
115

Residual stress in CVD coatings : Evaluation of XRD and TEM methods for micro and macrostress determination

Karlsson, Dennis January 2015 (has links)
Cutting tools are subject to extreme environment during processing, with hightemperatures and pressures. CVD coatings are used to increase lifetime andperformance of the WC/Co composite. Residual stresses in the coatings areinteresting as they may be destructive or constructive for the material duringoperation. Blasting is used to change the as-deposited tensile stress to compressive.The usefulness of X-ray diffraction (XRD) and nanobeam diffraction (NBD) forcharacterization of strains in the different coating layers has been investigated. XRDwith different anode materials has been used to determine the macrostress in thelayers and an attempt was done to calculate the average microstrain and crystallitesize. NBD was used to study the microstrain within single grains of the differentmaterials. A specimen preparation method has been developed for the studiedsamples using the FIB.The XRD analysis shows that the measurement condition is of great importanceduring stress measurements. The macrostress of the different samples show that theZrCN type coating is less stressed than the TiCN type coating after deposition. It isalso shown that the ZrCN type coating is less affected by the blasting. Determinationof microstrain and crystallite size from XRD needs further development.The NBD is a good method to evaluate microstrain within single grains, or betweengrains oriented in the same zone axis. The analyses show more strain within thegrains after blasting. The measurements indicate more strain variation in the Al2O3layer in the TiCN system compared to the ZrCN system.
116

Detailní projektování technologického pracoviště ve firmě KOVO STANĚK s.r.o. / Detailed project proposal of a technological workplace in a selected machine engineering company

Benešovský, Radek January 2016 (has links)
This diploma thesis deals with design of a new production facility for the manufacture of blasting machines in company Kovo Staněk Ltd. The thesis includes analysis and capacity calculations of individual production technologies, design of a building arrangement and economical evaluation of the whole investment.
117

Toward predictive maintenance in surface treatment processes : A DMAIC case study at Seco Tools / Mot prediktivt underhåll inom ytbehandlingsprocesser : En fallstudie enligt DMAIC vid Seco Tools

Berg, Martin, Eriksson, Albin January 2021 (has links)
Surface treatments are often used in the manufacturing industry to change the surface of a product, including its related properties and functions. The occurrence of degradation and corrosion in surface treatment processes can lead to critical breakdowns over time. Critical breakdowns may impair the properties of the products and shorten their service life, which causes increased lead times or additional costs in the form of rework or scrapping.  Prevention of critical breakdowns due to machine component failure requires a carefully selected maintenance policy. Predictive maintenance is used to anticipate equipment failures to allow for maintenance scheduling before component failure. Developing predictive maintenance policies for surface treatment processes is problematic due to the vast number of attributes to consider in modern surface treatment processes. The emergence of smart sensors and big data has led companies to pursue predictive maintenance. A company that strives for predictive maintenance of its surface treatment processes is Seco Tools in Fagersta. The purpose of this master's thesis has been to investigate the occurrence of critical breakdowns and failures in the machine components of the chemical vapor deposition and post-treatment wet blasting processes by mapping the interaction between its respective process variables and their impact on critical breakdowns. The work has been conducted as a Six Sigma project utilizing the problem-solving methodology DMAIC.  Critical breakdowns were investigated combining principal component analysis (PCA), computational fluid dynamics (CFD), and statistical process control (SPC) to create an understanding of the failures in both processes. For both processes, two predictive solutions were created: one short-term solution utilizing existing dashboards and one long-term solution utilizing a PCA model and an Orthogonal Partial Least Squares (OPLS) regression model for batch statistical process control (BSPC). The short-term solutions were verified and implemented during the master's thesis at Seco Tools. Recommendations were given for future implementation of the long-term solutions. In this thesis, insights are shared regarding the applicability of OPLS and Partial Least Squares (PLS) regression models for batch monitoring of the CVD process. We also demonstrate that the prediction of a certain critical breakdown, clogging of the aluminum generator in the CVD process, can be accomplished through the use of SPC. For the wet blasting process, a PCA methodology is suggested to be effective for visualizing breakdowns.
118

Ductile and Compacted Graphite Iron Casting Skin - Evaluation, Effect on Fatigue Strength and Elimination

Boonmee, Sarum 20 June 2013 (has links)
No description available.
119

Energia nas operações de desmonte de rocha e suas influências na moagem de minérios

Carlos, Marcelo Ribeiro January 2017 (has links)
Energia é um insumo estratégico na mineração, pois é fundamental na viabilidade das operações mineiras e importante na manutenção de custos operacionais baixos e competitivos. Por esse motivo, toda iniciativa que visa a busca por eficiência no consumo de energia é importante para a competitividade das mineradoras. Vários insumos energéticos são utilizados nas operações unitárias de mineração. Os exemplos mais comuns são diesel, eletricidade, gás natural, carvão e explosivos. O objetivo desse trabalho é estudar, do ponto de vista energético, as atividades realizadas no processo de desmonte de rochas, em um complexo minerador de minério de ferro, visando a melhor utilização da energia no desmonte de rocha para aperfeiçoar as operações unitárias subsequentes de processamento de minérios. Um foco maior foi dado à economia de energia nas moagens de bolas da planta de beneficiamento e concentração, provocada pelas modificações e melhorias realizadas no desmonte de rocha. A metodologia consistiu na análise de diversos desmontes de rocha variando a razão de carga de explosivos no complexo minerador alvo desse trabalho. Os produtos desses desmontes foram acompanhados até a sua entrada na planta de beneficiamento. Durante o processamento desses materiais nas moagens da planta, foram coletadas e analisadas as grandezas elétricas resultantes e comparadas com uma linha de base gerada antes do início do trabalho. Os dados foram analisados com o objetivo de visualizar a influência do aumento da razão de carga na performance energética da operação de moagem. Em paralelo, também, foram analisadas as situações operacionais e dificuldades existentes nas medições de campo e nos acompanhamentos de consumos energéticos dos processos unitários, assim como a infraestrutura necessária para que uma variável tão importante como energia elétrica possa ser monitorada de forma adequada. Por fim, foi abordada a importância, a metodologia e os resultados da redução de emissões de CO2 provenientes da economia de energia de todo o trabalho realizado em campo. Os resultados apresentados mostram que mesmo com um aumento significativo da alimentação de material compacto (maior WI) nas moagens, o consumo energético total dessa operação unitária não aumentou. Isso gerou uma potencial economia específica de energia e a consequente redução de emissões de CO2 na atmosfera, além de viabilizar o processamento de material mais compacto nas mesmas linhas de processo. Esse comportamento sugere que uma melhor energia gasta no desmonte de rocha pode impactar positivamente na produtividade e nos custos de produção do minério ao longo de sua cadeia produtiva. / Energy is a mining strategic source, critical in mining operations feasibility and important to maintain low operational costs in a competitive level. For this reason, any initiative aimed at searching for energy efficiency is important for mining companies’ competitiveness. Mining operations need several energy sources. Most common examples are diesel, electricity, natural gas, coal and explosives. This text aims to address, from an energy perspective, a study carried out in an iron ore mining complex, which had as main objective to reach a better rock blasting energy utilization to improve subsequent mining operations. A greater focus was given to energy savings in ball mills operations of a beneficiation and concentration plant, impacted by modifications and improvements made in rock blasting. Methodology consisted in monitoring several rock blasting, carried out in this mining complex, varying explosive charge ratio. Products of those rock blasting were monitored until they entered the processing plant. During ore processing in plant´s ball mills, electrical variables were collected and analyzed, comparing to a baseline generated before the beginning of this research. All data were analyzed to show influence of explosive charge ratio increase on energy performance of the milling operation. In parallel, operational issues and difficulties in field measurements of energy consumptions were described, as well as the necessary infrastructure that allows the variable electricity to be adequately monitored. Besides, the methodology and results of CO2 emissions reduction from energy savings of all fieldwork were discussed. The research data shows that even with a significant increase in compact feed (higher Work Index), total energy consumption of mill operation did not increase. This scenario generate a potential specific energy savings and consequent reduction in CO2 emissions in the atmosphere. In addition, enables more compact material to be processed in the same process lines. This behavior suggests that a better energy spent on rock blasting can positively affect productivity and ore production costs along its production chain.
120

Optimização das operações de desmonte de rocha com uso de explosivos em câmaras transversais (sublevel stoping)

Bundrich, Lauro Augusto January 2017 (has links)
O desmonte de rocha com uso de explosivos, aplicado à extração subterrânea de recursos minerais é uma tarefa impar que exige perícia e planejamento detalhado. Nesse contexto, essa dissertação tem sua relevância devido à apresentação de metodologias que visam aprimorar os processos envolvidos com o desmonte de rocha com uso de perfurações radiais, aplicado ao método de mineração subterrânea câmaras transversais, variante do método sublevel stoping. Para cumprir esse objetivo foram estabelecidas metodologias embasadas na utilização de registros sismográficos dos desmontes, mapeamento por laser das câmaras de lavra, registros operacionais da mina estudada. As metodologias aplicadas nas operações de mina incluíram: a segregação entre as atividades de perfuração e desmonte de rocha para assim aprimorar o ciclo operacional, a implantação de desmontes massivos como forma de aumentar a taxa de produção. A mudança na geometria das câmaras, a fim preservar o teto das mesmas. Um experimento com diferentes arranjos de retardo nos desmontes, como forma de determinar a configuração temporal menos nociva em termos de vibração, e por fim, a aplicação de uma nova malha de perfuração baseada no método dos triângulos reorientados de Hagan (1988), que visava diminuir a necessidade de perfuração e melhorar a distribuição energética dos desmontes em leque. As modificações propostas geraram resultados positivos, respectivamente quanto: aumento da eficiência dos ciclos de perfuração em 49% e aumento de 54% na produtividade das câmaras no período estudado, devido a implementação de desmontes massivos somados a segregação das atividades de perfuração e desmonte. Observou se a diminuição significativa da sobre-quebra (back break) do teto, da mesma forma os danos aos cabos de ancoragem (cable-bolts) foram reduzidos, resultados estes oriundos das modificações na geometria das câmaras. Os testes com diferentes arranjos de retardos demonstraram que o arranjo: 50ms entre furos e 200ms entre linhas, gerou a menor intensidade de vibração. O teste com o padrão de perfuração baseado na técnica de Hagan apresentou melhor índice de perfuração específica, porém, resultou em uma recuperação menor do que a média usual das câmaras, (76% contra 85%). Pode-se concluir que as metodologias propostas foram validas como medidas de aprimoramento das operações de perfuração e desmonte de rocha, a exceção da técnica dos triângulos reorientados de Hagan. Também foi possível concluir que a razão entre os valores de retardos intra linhas (L-L) e intra furos (F-F) influi diretamente na intensidade de vibração. / The blasting of rocks, applied to the underground extraction of mineral resources is a difficult task that requires expertise and detailed planning. In this context, this dissertation has its relevance due to the presentation of methodologies that aim to improve the processes involved with the blasting of rocks utilizing ring drilling, applied to the underground mining method transversal stopes, a variant of the method sublevel stoping. To fulfill this objective, methodologies based on the use of seismographic records of the blasting events, laser scanners of the stopes and operational records of the mine were used, as well as the use of Micromine software. The methodologies applied in mine operations included: segregation between rock drilling and blasting activities to improve the operational cycle, the implantation of the concept of mass blasting as a way to increase the production rate, the change in the drilling pattern in order to preserve the roof of the stopes, an experiment with different arrangements of delays for the blasting, as a way to determine the less harmful configuration in terms of vibration and finally the application of a new drilling pattern based on the reoriented triangles method of Hagan (1988), which aimed to reduce the need for drilling and to improve the energy distribution of the rings of drilling. The proposed modifications generated positive results, respectively: increase in the efficiency of the drilling cycles by 49% and a 54% increase in the productivity of the studied period, due to the implementation of mass blasting concept added to the segregation of drilling and blasting activities. It was observed that the significant decrease of the back break of the roof, in the same way the damages to the cables of reinforcement (cable-bolts) were reduced, as a result from the modifications in the drillings. The tests with different delay arrangements showed that the arrangement: 50ms between holes and 200ms between rows, generated the lowest vibration intensity. The Hagan technique-based drilling test showed a better specific drilling index, but resulted in a lower ore recovery than the usual to the stopes mean (76% vs. 85%). It can be concluded that the proposed methodologies were valid as measures of improvement of the operations of drilling and blasting of rock, except for the technique of the reoriented triangles of Hagan. It was also possible to conclude that the ratio between inter ring and inter-hole delays directly influences the vibration intensity.

Page generated in 0.0743 seconds