• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • 1
  • Tagged with
  • 12
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sensory ecology of carbon dioxide perception in leaf-cutting ants

Kleineidam, Christoph. January 1900 (has links)
Würzburg, Univ., Diss., 1999. / Dateien im PDF-Format. Computerdatei im Fernzugriff.
2

Sensory ecology of carbon dioxide perception in leaf-cutting ants

Kleineidam, Christoph. January 1900 (has links)
Würzburg, Univ., Diss., 1999. / Dateien im PDF-Format. Computerdatei im Fernzugriff.
3

Sensory ecology of carbon dioxide perception in leaf-cutting ants

Kleineidam, Christoph. January 1900 (has links)
Würzburg, University, Diss., 1999. / Dateien im PDF-Format.
4

Where and how to build? Influence of social and environmental cues on nest building behavior in leaf-cutting ants / Wo und wie Bauen? Der Einfluss von sozialen und Umwelt-Hinweisen auf das Nestbauverhalten von Blattschneiderameisen

Römer, Daniela January 2014 (has links) (PDF)
This thesis explores the influence of social and environmental cues on the nest building behavior of leaf-cutting ants. Especially, the investigations are aimed at evaluating the mechanisms of nest building and how the nest environment can spatially guide building responses that lead to an adaptive nest architecture. The emergence of nest chambers in the nest of the leaf-cutting ant Acromyrmex lundi were evaluated. Rather than excavating nest chambers in advance, at places where workers encounter suitable environmental conditions for brood and fungus rearing, these items have to be present at a site. When presented in the laboratory with a choice between two otherwise identical digging sites, offering suitable environmental conditions, but one containing brood, the workers displayed a higher excavation activity at the site where they encountered the putative content of a chamber. The shape of the excavated cavity was also more round and chamber-like. It is concluded that leaf-cutting ants respond to social cues during nest building. Excavation is a costly process and colonies have to spend a part of their energy stores on nest building, so that regulatory responses for the control of nest excavation are expected to occur. Worker density at the beginning of the digging process influenced digging activity while the presence of in-nest stores did not. Stored brood and fungus did however influence the architecture of the excavated nest, leading to the excavation of larger chambers and smaller tunnels. While self-organized mechanisms appear to be involved in the nest building process, the social cues of the ants’ environment during building clearly influence the nest architecture and lead to an adjustment of the nest size to the current space needs of the colony. Workers secondarily regulated nest size by the opportunistic refilling of unused space with excavated soil pellets. As the ants should provide suitable conditions for brood and fungus rearing, they should show a behavioral response to CO2 concentrations, as the gas is known to hinder fungus respiration. Workers of A. lundi did indeed avoid high CO2-levels for fungus rearing but actually preferred CO2-values in the range encountered close to the soil surface, where this species excavates their nests. However, different CO2-levels did not affect their excavation behavior. While fungus chambers make up part of a leaf-cutting ant nest, most leaf-cutting ants of the genus Atta also spent part of the colony’s energy on excavating large, voluminous chambers for waste disposal, rather than scattering the material aboveground. It is expected that leaf-cutting ants also show environmental preferences for waste management. In experiments Atta laevigata workers preferred deposition in a warm and dry environment and showed no preference for specific CO2-levels. The continued accumulation of waste particles in a waste chamber seems to be based on the use of volatiles. These originate from the waste itself, and seem to be used as an orientation cue by workers relocating the material. The ensuing large accumulation of waste at one site should result in the emergence of more voluminous chambers for waste disposal. / Diese Arbeit erforscht den Einfluss von sozialen und Umwelt-Hinweisen auf das Nestbauverhalten von Blattschneider-Ameisen. Die Untersuchungen sind besonders darauf gerichtet, die Mechanismen des Nestbaus zu erforschen, und wie die Umgebung des Nestes Bau-Antworten räumlich beeinflussen kann, wodurch eine adaptierte Nestarchitektur entsteht. Die Entstehung von Nestkammern in Nestern der Blattschneiderameise Acromyrmex lundi wurde untersucht. Anstatt Nestkammern im Voraus zu graben, an Orten an denen Arbeiterinnen geeignete Umweltbedingungen für Brut- und Pilzwachstum vorfinden, müssen diese Elemente an dieser Stelle anwesend sein. Wenn Arbeiter im Labor die Wahl hatten, an identischen Grabeorten zu graben, aber ein Grabeort ebenfalls Brut anbot, kam es zu einer höheren Grabeaktivität an dem Ort, an dem der voraussichtliche Inhalt einer Kammer, Brut und Pilz, anwesend war. Die Form des gegrabenen Hohlraumes war außerdem runder und entsprach mehr der einer Kammer. Es wurde geschlussfolgert, dass Blattschneiderameisen auf die Anwesenheit dieser sozialen Hinweise während des Nestbaus reagieren. Graben ist ein kostspieliger Prozess und Kolonien müssen einen Teil ihrer Energiereserven für den Nestbau aufwenden. Daher werden regulatorische Prozesse für die Kontrolle des Nestgrabens erwartet. Die Dichte der Arbeiter zu Beginn des Grabeprozesses beeinflusste die Grabeaktivität, während die Anwesenheit von Brut und Pilz dies nicht taten. Anwesende Brut und Pilz beeinflussten hingegen die Architektur des gegrabenen Nestes und führten zum Graben von größeren Kammern und kleineren Tunneln. Während Mechanismen der Selbst-Organisation am Nestbau-Prozess beteiligt sind, beeinflussen die sozialen Hinweise während des Nest-Baus anscheinend die Nest-Architektur und führen zu einer Anpassung der Nestgröße an die momentanen Ansprüche der Kolonie. Arbeiterinnen regulierten sekundär die Nestgröße, indem sie opportunistisch ungenutzten Platz mit ausgegrabenen Pellets auffüllen. Da die Ameisen Brut und Pilz unter geeigneten Umweltbedingungen entwickeln sollten, sollten sie Verhaltensantworten auf verschiedene CO2 Konzentrationen zeigen, da es bekannt ist, dass das Gas die Atmung des symbiontischen Pilzes negativ beeinflussen kann. Arbeiter vermieden in der Tat 4% CO2, zogen aber Konzentrationen von 1% CO2 vor, wie sie auch in den oberflächennahen Erdschichten vorzufinden sind, in denen die untersuchte Art, Acromyrmex lundi, ihre Nester gräbt. Allerdings beeinflussten höhere CO2 Konzentrationen nicht die Grabeaktivität der Arbeiterinnen. Während die Pilzkammern einen Teil eines Blattschneider-Nestes bilden, so verwenden die meisten Arten der Gattung Atta auch einen Teil der Energie der Kolonie auf das Graben von großen, voluminösen Abfallkammern, anstatt das Material an der Erdoberfläche zu verstreuen. Es wird daher erwartet, dass Blattschneiderameisen während der Abfallentsorgung bestimmte Präferenzen für ihre Umwelt zeigen. In Experimenten präferierten Arbeiterinnen von Atta laevigata eine warme und trockene Umgebung, zeigten jedoch keinerlei Präferenz für die CO2 Konzentration ihrer Umgebung. Die kontinuierliche Anhäufung von Abfallpartikeln in einer Abfallkammer scheint auf der Wahrnehmung von Volatilen zu basieren. Diese scheinen vom Abfall selbst auszugehen und zur Orientierung der abfalltragenden Arbeiterinnen zu dienen. Die darauf erfolgende Anhäufung von Abfall an einem Ort sollte zur Entstehung von großvolumigen Kammern zur Abfallentsorgung führen.
5

Building behaviour and the control of nest climate in Acromyrmex leaf-cutting ants

Bollazzi Sosa, Leonardo Martin January 2008 (has links)
Zsfassung in dt. Sprache. - Würzburg, Univ., Diss., 2008
6

The olfactory system of leaf-cutting ants: neuroanatomy and the correlation to social organization

Kelber, Christina January 2009 (has links)
Würzburg, Univ., Diss., 2010. / Zsfassung in dt. Sprache.
7

Mechanismen zur Regulierung der Nestgröße während des Koloniewachstums bei Blattschneiderameisen

Fröhle, Kerstin. Unknown Date (has links)
Univ., Diss., 2010--Würzburg.
8

Effects of forest fragmentation on bottom-up control in leaf cuttings ants

Urbas, Pille. Unknown Date (has links) (PDF)
Techn. University, Diss., 2005--Kaiserslautern. / Erscheinungsjahr an der Haupttitelstelle: 2004.
9

Sensory Ecology of Carbon Dioxide Perception in Leaf-cutting Ants / Sensorische Ökologie der Kohlendioxid-Wahrnehmung bei Blattschneiderameisen

Kleineidam, Christoph January 1999 (has links) (PDF)
The study examines the sensory ecology of CO2 perception in leaf-cutting ants. It begins with the ecological role of CO2 for leaf-cutting ants. Inside the subterranean nests of Atta vollenweideri large amounts of CO2 are produced by the ants and their symbiotic fungus. Measurements in field nest at different depths revealed that CO2 concentrations do not exceed 2 per cent in mature nests. These findings indicate effective ventilation even at depths of 2 m. Small colonies often face the situation of reduced ventilation when they close their nest openings as a measure against flooding. A simulation of this situation in the field as well as in the laboratory revealed increasing CO2 concentrations causing reduced colony respiration which ultimately might limit colony success. Wind-induced ventilation is the predominant ventilation mechanism of the nests of Atta vollenweideri, shown by an analysis of external wind and airflow in the channels. The mound architecture promotes nest ventilation. Outflow channels have their openings in the upper, central region and inflow channels had their openings in the lower, peripheral region of the nest mound. Air is sucked out through the central channels, followed by a delayed inflow of air through the peripheral channels. The findings support the idea that the nest ventilation mechanism used by Atta vollenweideri resembles the use of Bernoulli’s principle in Venturi Tubes and Viscous Entrainment. CO2 is important in a second context besides microclimatic control. A laboratory experiment with Atta sexdens demonstrated that leaf-cutting ants are able to orientate in a CO2 gradient. Foragers chose places with higher CO2 concentration when returning to the nest. This effect was found in all homing foragers, but it was pronounced for workers carrying leaf fragments compared to workers without leaf fragments. The findings support the hypothesis that CO2 gradients are used as orientation cue inside the (dark) nest to find suited fungus chambers for unloading of the leaf fragments. After the importance of CO2 in the natural history of the ants has thus been demonstrated, the study identifies for the first time in Hymenoptera type and location of the sensory organ for CO2 perception. In Atta sexdens a single neuron associated with the sensilla ampullacea was found to respond to CO2. Since it is the only neuron of this sensillum, the sensillum characters can be assumed to be adapted for CO2 perception. A detailed description of the morphology and the ultrastructure allows a comparison with sensilla for CO2 perception found in other insects and provides more information about sensillum characters and their functional relevance. The CO2 receptor cells respond to increased CO2 with increased neural activity. The frequency of action potentials generated by the receptor cell shows a phasic-tonic time course during CO2 stimulation and a reduced activity after stimulation. Phasic response accomplished with a reduced activity after stimulation results in contrast enhancement and the ability to track fast fluctuations in CO2 concentration. The neurons have a working range of 0 to 10 per cent CO2 and thus are able to respond to the highest concentrations the ants might encounter in their natural environment. The most exciting finding concerning the receptor cells is that the CO2 neurons of the leaf-cutting ants do not adapt to continuous stimulation. This enables the ants to continuously monitor the actual CO2 concentration of their surroundings. Thus, the sensilla ampullacea provide the ants with the information necessary to orientate in a CO2 gradient (tracking of fluctuations) as well as with the necessary information for microclimatic control (measuring of absolute concentrations). / Die vorliegende Arbeit beschäftigt sich mit der sensorischen Ökologie der CO2-Wahrnehmung bei Blattschneiderameisen. Im folgenden werden die wichtigsten Ergebnisse stichpunktartig zusammengefaßt: Messungen in Freiland-Nestern von Atta vollenweideri ergaben selbst in Tiefen von zwei Metern Konzentrationen von weniger als 2 Prozent CO2, obwohl sowohl die Ameisen als auch ihr symbiontischer Pilz große Mengen an CO2 produzieren. Diese Tatsache weist auf eine effektive Belüftung der Nester hin. Kleine, wachsende Kolonien mit flachen Nesthügeln verhindern bei Regen ein Fluten ihrer Nester, indem sie die Eingänge verschließen. Dies führt zum Anstieg der CO2-Konzentration im Inneren der Nester. Eingeschränkte Belüftung der Nester führt zu reduzierter Atmung der Kolonie. Dies kann negative Auswirkungen auf das Wachstum der Kolonie haben. Die Architektur der Nesthügel unterstützt die passive, durch Wind induzierte Belüftung der Nester. Es lassen sich Abluft und Zuluft-Kanäle unterscheiden. Abluftkanäle haben ihre Öffnungen im zentralen, erhöhten Bereich der Nesthügel. Die Öffnungen der Zuluftkanäle liegen im peripheren, tiefer gelegenen Bereich der Nesthügel. Durch Wind wird verbrauchte Luft aus den Abluftkanälen gesaugt, frische Luft strömt verzögert durch die Zuluftkanäle ein. Die physikalischen Mechanismen sind vergleichbar dem Bernoulli Prinzip. CO2 wird von Atta sexdens Arbeiterinnen zur Orientierung genutzt. Arbeiterinnen, welche vom foragieren zu ihrem Nest zurückkehren, bevorzugen in einem Wahlversuch eine erhöhte CO2-Konzentration. Dieser Effekt ist bei Arbeiterinnen die Blattfragmente tragen stärker ausgeprägt. Die Ergebnisse unterstützen die Hypothese, daß CO2 beim Orientieren zu den Pilzgärten im dunklen Nest genutzt wird. Sensilla ampullacea auf den Antennen sind die Sinnesorgane der CO2-Perzeption. Eine einzige CO2-Rezeptorzelle innerviert das einwandige Sinneshaar. Das Sinneshaar befindet sich in einer Ampulle, die tief versenkt in der Antenne liegt und nur durch einen langen, dünnen Gang mit der Außenwelt in Verbindung steht. Die Rezeptorzellen zeigen ein phasisch-tonisches Antwortverhalten in dem Bereich von 0-10 Prozent CO2. Geringe und kurzzeitige Schwankungen der CO2-Konzentrationen können erkannt werden. Dies ist eine wichtige Voraussetzung für eine Orientierung in einem CO2-Gradienten. Die CO2-Rezeptorzellen zeigen bei lang anhaltender Stimulation keine Adaptation. Ameisen können demnach kontinuierlich die absolute CO2-Konzentration in ihren Nestern messen.
10

Mechanismen zur Regulierung der Nestgröße während des Koloniewachstums bei Blattschneiderameisen / Mechanisms of nest size regulation during colony growth in leaf-cutting ants

Fröhle, Kerstin January 2009 (has links) (PDF)
Die Strukturen der Ameisennester, so wird seit einiger Zeit vermutet, entstehen aufgrund eines selbstorganisierten Prozesses, bei dem die einzelne Ameise nur über lokale Informationen verfügt, ohne eine Übersicht über das globale Muster zu haben. Die Gesamtstruktur resultiert demnach viel eher durch multiple Interaktionen, die entweder direkt zwischen den Individuen oder zwischen den Individuen und ihrer Umgebung stattfinden. Ziel dieser Arbeit war es, die Kriterien zu untersuchen, nach denen sich die Blattschneiderameisen während des Nestbaus richten, um so die Frage zu beantworten, ob es für die Entstehung der Strukturen nur der Interaktion mit der Umgebung bedarf oder ob direkte soziale Interaktionen auch einen Einfluss darauf haben. Betrachtet wurde dazu die Kontrolle der Nestgröße während verschiedener Stadien der Kolonieentwicklung: in der Gründungsphase, in der die Königin die Entscheidungen alleine und ohne soziale Interaktionen fällt; in der darauf folgenden Etablierungsphase, in der Arbeiterinnen entweder alleine oder in kleinen Gruppen die bereits existierenden Strukturen verändern; sowie im adulten Stadium, in der die Bautätigkeit von mehreren Tausend Arbeiterinnen ausgeführt werden kann. Königinnen graben unverzüglich nach dem Hochzeitsflug ein Gründungsnest, das aus einem vertikalen Tunnel und einer horizontalen Kammer besteht, in welcher die erste Brut und der Pilz gezüchtet werden. Um ein Gründungsnest zu graben, muss die Königin zuerst mit ihren Mandibeln kopfüber am Boden graben. Hierbei legt sie einen Tunnel an, der einen etwas größeren Durchmesser als sie selbst besitzt. Ist dann die gewünschte Tunnellänge erreicht, so wechselt sie vom vertikalen Tunnel zum horizontalen Kammergraben, worauf anschließend der Tunnel verschlossen wird. Die Frage, die sich nun stellt, ist, wie Atta vollenweideri Königinnen die Länge des Tunnels bewerten, um den Wechsel zum Kammergraben einzuleiten. Aufgrund der Ergebnisse wird angenommen, dass die Königinnen sowohl die Länge des Tunnels, wahrscheinlich über Propriozeption, als auch die Grabezeit abschätzen und mit einer internen Referenz vergleichen. Wurde demnach weder die erwartete Länge noch die maximal schon investierte Zeit erreicht, so fuhren die Königinnen fort den Tunnel zu verlängern. Der Wechsel vom Tunnel zum Kammergraben wurde dann eingeleitet, wenn die Königinnen, in Abhängigkeit von den jeweiligen Bodenbedingungen, entweder zuerst die erwartete Länge oder die zu investierende Zeit erreicht hatten. Daraufhin fingen sie an die Kammer zu bauen, wobei sie die nun ausgegrabenen Lehmpartikel dazu benutzten, den Tunnel zu verschließen. Diese wurden von oben bis unten komplett verschlossen, womit die Kammergrößen von den Tunnellängen abhängig waren. Wurden die Königinnen jedoch mit Tunneln konfrontiert, die experimentell über die erwartete Länge hinaus verlängert wurden, so wurden diese nicht mehr über die komplette Strecke, sondern in mehreren Teilabschnitten verschlossen. Dies deutet darauf hin, dass bei der Regulierung der Kammergröße ein weiterer Mechanismus involviert ist. Nach 2-3 Monaten schlüpfen in der Regel die ersten Arbeiterinnen, womit die Kolonie in die Wachstumsphase eintritt. Mit dem Wachsen der Kolonie wird das Gründungsnest verändert, wobei die Arbeiterinnen die bereits existierende Pilzkammer vergrößern und neue Tunnel anlegen. Nach welchen Kriterien sie sich dabei richten, war allerdings nicht bekannt. Gezeigt werden konnte, dass Acromyrmex lundi Arbeiterinnen anfangen ein Nest zu vergrößern, wenn sich der frei für die Ameisen zur Verfügung stehende Platz innerhalb des Nestes reduziert und dass sie aufhören, wenn wiederum genügend Platz vorhanden ist. Eine Zunahme in der Gruppengröße (1, 2, 6 und 12 Tiere) bewirkte somit, einen proportionalen Anstieg des ausgegrabenen Volumens und damit der Arbeitsleistung der Kolonie. Ob beim Graben aber eher die schon vorhandenen Pilzkammer vergrößert oder neue Tunnel angelegt werden, hing von der Stimuluskombination ab. So bewirkte ein Platzmangel, ausgelöst durch eine, relativ zur Nestgröße, große Zahl an Arbeiterinnen, das bereits existierende Tunnel verlängert oder neue angelegt wurden. Eine Kammervergrößerung konnte dagegen nur beobachtet werden wenn Pilz vorhanden und der Platz in der Kammer reduziert war. Die Arbeiterinnen reagierten dabei, auf dieselben Stimuli mit denselben Verhaltensmustern, unabhängig davon ob sie alleine oder in einer Gruppe gruben. Je mehr Ameisen sich aber in der Gruppe befanden desto mehr wurden die Kammern zunächst vergrößert, wobei sich jedoch keine Korrelation mit der Gruppengröße zeigte. Dies lässt darauf schließen, dass die Vergrößerung von den sich gleichzeitig am Graben beteiligenden Ameisen abhängt, die die Kammern so lange vergrößern bis genügend Platz vorhanden ist. Die Zahl der Ameisen die sich jedoch am Graben beteiligen nimmt mit steigender Gruppengröße zu, weswegen die Kammern bei großen Ameisenzahlen größer wurden. Gleichzeitig mit dem Vergrößern fingen die Ameisen jedoch an ausgegrabene Lehmpartikel in der Kammer zu deponieren. Dies bewirkte, dass vor allem größere Kammern im Nachhinein verkleinert wurden, bis ein bestimmter Abstand zum Pilz erreicht war, bei dem eventuell zwei Ameisen aneinander vorbeilaufen konnten. Somit hatte die Einlagerung der Lehmpartikel in der Kammer zur Folge, dass die Kammergröße im Nachhinein besser dem Pilzvolumen angepasst wurde. Ähnlich wie bei der Kammervergrößerung verhielt es sich beim Anlegen der Tunnel. Auch diese wurden umso breiter je mehr Tiere sich gleichzeitig am Graben beteiligten und wurden dann im Nachhinein durch Einlagerung von Lehmpartikeln auf eine bestimmte Breite reduziert. Zusätzlich wurden die Tunnel aber auch umso länger je mehr Ameisen sich in der Gruppe befanden, weshalb die Nestgröße über die Größe der Gruppe reguliert wurde. Acromyrmex lundi Nester bestehen in der Regel aus einer großen zentralen Pilzkammer und aus mehreren Tunneln, die diese mit der Erdoberfläche verbinden. Wie die Ameisen in dem adulten Stadium die Größe der Pilzkammer regulieren, wurde bisher noch nicht untersucht. Als mögliche Kriterien, nach denen sich die Ameisen richten könnten, wurde sowohl das vorhandene Pilzvolumen als auch die Anzahl an Arbeiterinnen in Betracht gezogen. Gezeigt werden konnte, dass die Kammern umso größer werden, je mehr Pilzvolumen vorhanden ist. Aufgrund dessen wird angenommen, dass der Pilz beim Bau der Pilzkammer als Vorlage dient und somit das Grabeverhalten räumlich organisiert. Eine Erhöhung der Ameisenzahlen bewirkte dagegen eine Vergrößerung des Nestvolumens durch das Anlegen von Tunneln. Dadurch nahm das insgesamt ausgegrabene Volumen und damit die Grabeaktivität mit der Größe der Kolonie zu. Allerdings stieg es nicht, wie bei den kleinen Gruppen beobachtet werden konnte, proportional zur Koloniegröße an. Vermutet wird, dass sowohl die Kammer- als auch die Nestvergrößerung über die Individuendichte reguliert wird. Demnach würden die Tiere anfangen zu graben, wenn die Individuendichte über einen Schwellenwert ansteigt und aufhören, wenn die Dichte wiederum unter diesen Schwellenwert fällt. Allerdings gibt es Hinweise darauf, dass die Grabeaktivität nicht nur über die Individuendichte, sondern zusätzlich noch durch ein rhythmisches Graben in der Nacht geregelt zu sein scheint. Zusammengenommen konnte also gezeigt werden, dass Königinnen auf Stimuli in ihrer Umgebung reagieren, indem sie die Tiefe des Gründungsnestes durch das Abschätzen der schon gegrabenen Tunnellänge bestimmen. Das Nestgraben erfolgt allerdings nicht nach einem einfachen Stimulus-Antwort-Mechanismus, sondern die Königinnen richten sich zusätzlich noch nach der Zeit, was einen internen Messfaktor darstellt. Ebenfalls scheint die Kammergröße durch mindestens zwei Mechanismen reguliert zu werden. Somit fließen sowohl bei der Bestimmung der Tunnellänge als auch bei der Regulation der Kammergröße mehrere Kriterien in die Entscheidung mit ein. Ebenso wie die Königinnen reagieren einzelne Individuen auf unterschiedliche Stimuli in ihrer Umgebung, wodurch unterschiedliche Neststrukturen entstehen können. So fangen Ameisen an ein Nest zu vergrößern, wenn sich der zur Verfügung stehende Platz innerhalb des Nestes reduziert. Wächst der Pilz so reduziert sich der Abstand zwischen Pilz und Kammerwand, was für die Tiere ein Signal ist, die Kammer zu vergrößern. Dabei wird der Pilz als Vorlage verwendet, der das Graben räumlich organisiert. Ist der Platz innerhalb des Nestes dagegen aufgrund des Koloniewachstums reduziert, so fangen die Arbeiterinnen an Tunnel auszugraben, so dass die Nestgröße der Koloniegröße angepasst wird. Allerdings, so wird vermutet, hängt die Anzahl der sich am Graben beteiligenden Ameisen sowie auch deren Arbeitsleistung von der Größe der Gruppe ab. Demnach sind die Individuen nicht nur sensitiv auf die Stimuli, die aus ihrer Umgebung kommen, sondern ändern ihr Verhalten auch in Abhängigkeit von dem sozialen Umfeld, in dem sie sich befinden. / The emergence of ant nest structures is discussed as a self-organized process in which the single ant has only local information without an overview over the global system. The entire structure rather results from numerous interactions between the individuals directly or between the individuals and their environment. The aim of this work was to investigate the criteria leaf-cutting ants comply with during nest construction in order to answer the question if nest structures can emerge solely from interactions of the ants with their environment or if direct social interactions are additionally necessary. For this purpose the control of nest size during different stages of colony ontogeny was considered: in the colony founding phase in which the queen has to make her decisions alone and without social interactions, in the following establishing phase in which the workers modify the structures either alone or in small groups as well as in the adult phase in which the building activity can be performed by several thousand ants. Founding queens dig a founding nest immediately after the nuptial flight. The founding nest consists of a vertical tunnel and a horizontal chamber, in which the first brood and the fungus are reared. A queen starts by digging headfirst into the ground with her mandibles excavating a tunnel slightly wider than her own diameter. Once the desired tunnel length is reached, she switches from vertical tunnel to horizontal chamber digging and starts to close the tunnel with the now excavated clay particles. It is unclear how Atta vollenweideri queens estimate the tunnel length in order to initiate the switch to chamber digging. The results of this study suggest that queens estimate both the tunnel length, probably through proprioception, as well as the digging time and compare them with an internal reference. Accordingly, the queens continued tunnel digging if neither the expected length nor the maximal invested time was reached. The switch from tunnel to chamber digging was initiated as, depending on soil conditions, the queens reached first either the expected tunnel length or the invested time. The queens then started chamber digging and used the now excavated particles to close the tunnels. As the tunnels were closed from top to bottom chamber sizes varied in dependence on the tunnel length. However, if the queens were confronted with tunnels that had experimentally been elongated beyond the desired length, then these tunnels were not closed over the whole distance but in several sections, indicating that a further mechanism is involved in the regulation of chamber size. The first workers generally eclose after 2-3 month at which point the colony enters the growth phase. With the growth of the colony, the founding nest is altered through the enlargement of the already existing fungus chamber and construction of new tunnels. The rules that guide worker digging behaviour are unknown. This study shows that Acromyrmex lundi workers start to enlarge a nest if the available free space within the nest is reduced and that they stop when enough space is available. An increase in group size (1, 2, 6 and 12ants) resulted in an increase of excavated volume, so that the digging effort of the colony rose proportionally with group size. However, whether the pre-existing fungus chamber was enlarged during the digging process or new tunnels were built depended on the stimulus combination. A lack of space triggered through a large number of workers relative to nest size, lead to lengthening of already existing tunnels or building of new ones. On the other hand chambers were only enlarged if fungus was present and the space inside the chamber reduced. Workers reacted to the same stimuli with the same behaviour pattern independent of whether they were digging alone or within a group. However, with increasing group size the chambers were increasingly enlarged but not in proportion to group size. This suggests that the enlargement depends on the number of ants participating in digging simultaneously who enlarge the chamber until they have enough space. The number of ants participating in digging however increases with increasing group size which is why the chambers were bigger in larger groups. Simultaneously with the enlargement of the structure the ants started to deposit the excavated clay particles in the chamber. As a consequence, especially the bigger chambers were reduced in size afterwards until a defined distance between chamber wall and fungus was reached. This distance was approximately the width of two ants. The deposition of the clay particles thus resulted in a better adaptation of the chamber size to the fungus volume. Similar results could be seen for tunnel construction. These were also enlarged according to the number of ants simultaneously participating in digging and reduced in width afterwards through the deposition of clay particles. But tunnels additionally increased in length in dependence on the group size, so that group size regulates the nest size. Grown Acromyrmex lundi nests consist of a big central chamber and of several tunnels connecting the chamber with the surface. How the size of the fungus chamber is regulated in the adult phase was so far unknown. Both the existing fungus volume and the number of ants were considered as possible criteria. The results of this study show that the chambers increased in size as more fungus volume was available. This suggests that during chamber construction the fungus volume serves as a template organising the digging behaviour in space. In contrast, an increase in the number of ants caused an enlargement of the nest volume through the building of tunnels. Thus the overall excavated volume and hence the digging activity increased with group size. However, this increase was not proportional to colony size as could be shown in the small groups. It is assumed that both the chamber as well as the nest enlargement is regulated over the density of the individuals. Thus the digging process would be initiated if the density exceeds a threshold value and stopped if it in turn falls below the threshold value. However there is evidence that the digging activity may be regulated additionally by a rhythmical digging during the night. Taken together it could be shown that the queens react to stimuli in the environment by assessing the depth of the founding nest through the estimation of the tunnel length already dug. Nest construction, however, is not regulated over a simple stimulus response mechanism as queens’ additional factor in the already invested digging time indicating an internal cue. Chamber size also seems to be regulated by at least two mechanisms. Thus in the assessment over the tunnel length as well as in the regulation of the chamber size more than one criteria was integrated into the decision process. Like the queens, single individuals reacted to different stimuli in their environment whereby different nest structure emerged. The ants start to enlarge a nest if the available space within the nest is reduced. When the fungus grows the distance between the fungus and the chamber wall is reduced which is a signal for the ants to enlarge the chamber. The fungus is thereby used as a template coordinating the digging process in space. If, on the other hand, the space is reduced due to colony growth, ants start to construct tunnels whereby nest size is adjusted to colony size. However, it is assumed that the number of digging ants as well as their digging effort depends on group size. According to this, individuals are not just sensitive to stimuli of the environment but change their behaviour additionally in dependence of the social context.

Page generated in 0.1026 seconds