• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

GENERALIZATIONS OF AN INVERSE FREE KRYLOV SUBSPACE METHOD FOR THE SYMMETRIC GENERALIZED EIGENVALUE PROBLEM

Quillen, Patrick D. 01 January 2005 (has links)
Symmetric generalized eigenvalue problems arise in many physical applications and frequently only a few of the eigenpairs are of interest. Typically, the problems are large and sparse, and therefore traditional methods such as the QZ algorithm may not be considered. Moreover, it may be impractical to apply shift-and-invert Lanczos, a favored method for problems of this type, due to difficulties in applying the inverse of the shifted matrix. With these difficulties in mind, Golub and Ye developed an inverse free Krylov subspace algorithm for the symmetric generalized eigenvalue problem. This method does not rely on shift-and-invert transformations for convergence acceleration, but rather a preconditioner is used. The algorithm suffers, however, in the presence of multiple or clustered eigenvalues. Also, it is only applicable to the location of extreme eigenvalues. In this work, we extend the method of Golub and Ye by developing a block generalization of their algorithm which enjoys considerably faster convergence than the usual method in the presence of multiplicities and clusters. Preconditioning techniques for the problems are discussed at length, and some insight is given into how these preconditioners accelerate the method. Finally we discuss a transformation which can be applied so that the algorithm extracts interior eigenvalues. A preconditioner based on a QR factorization with respect to the B-1 inner product is developed and applied in locating interior eigenvalues.
2

A new block Krylov subspace framework with applications to functions of matrices acting on multiple vectors

Lund, Kathryn January 2018 (has links)
We propose a new framework for understanding block Krylov subspace methods, which hinges on a matrix-valued inner product. We can recast the ``classical" block Krylov methods, such as O'Leary's block conjugate gradients, global methods, and loop-interchange methods, within this framework. Leveraging the generality of the framework, we develop an efficient restart procedure and error bounds for the shifted block full orthogonalization method (Sh-BFOM(m)). Regarding BFOM as the prototypical block Krylov subspace method, we propose another formalism, which we call modified BFOM, and show that block GMRES and the new block Radau-Lanczos method can be regarded as modified BFOM. In analogy to Sh-BFOM(m), we develop an efficient restart procedure for shifted BGMRES with restarts (Sh-BGMRES(m)), as well as error bounds. Using this framework and shifted block Krylov methods with restarts as a foundation, we formulate block Krylov subspace methods with restarts for matrix functions acting on multiple vectors f(A)B. We obtain convergence bounds for \bfomfom (BFOM for Functions Of Matrices) and block harmonic methods (i.e., BGMRES-like methods) for matrix functions. With various numerical examples, we illustrate our theoretical results on Sh-BFOM and Sh-BGMRES. We also analyze the matrix polynomials associated to the residuals of these methods. Through a variety of real-life applications, we demonstrate the robustness and versatility of B(FOM)^2 and block harmonic methods for matrix functions. A particularly interesting example is the tensor t-function, our proposed definition for the function of a tensor in the tensor t-product formalism. Despite the lack of convergence theory, we also show that the block Radau-Lanczos modification can reduce the number of cycles required to converge for both linear systems and matrix functions. / Mathematics

Page generated in 0.0533 seconds