• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Block copolymer synthesis and self-assembly for membrane and lithographic applications

January 2019 (has links)
archives@tulane.edu / Silicon-based block copolymers have gained prominence because of their inherent ability to self-assemble at the low molecular weight. By utilizing this vital factor, we synthesize poly(vinylmethylsiloxane-block-methyl methacrylate) (PVMS-b-PMMA) intending to create small characteristic features with the potential application for lithography and membrane filtration. The polymer is made by a combination of anionic synthesis of PVMS, ATRP (atom radical transfer polymerization) of PMMA, and then cojoining the end-group functionalized blocks with a “click” reaction. After synthesis, thin films (10-100 nm) were self-assembled to form structures aligned perpendicular to the substrate. The morphology was observed by atomic force microscopy, grazing incidence small-angle X-ray scattering (GISAXS), and transmission electron microscopy (TEM). Additionally, the hydrophobicity of PVMS prompted us to develop a coating on microporous membrane supports for separation of water-in-oil mixtures. The PVMS was used as an effective coating to prevent fouling while maintaining high selectivity for both water-in-toluene and water-in-decane emulsion in gravity-based filtration. Finally, cyclic block copolymers (BCPs) have garnered increased attention because of their unique structure, which differs from linear BCPs due to a lack of end groups. This feature in combination with the high segregation strength of silicon-based polymers is desirable for nanolithography. Thus, we synthesized a new class of silicon-based cyclic polymer, cyclic PVMS-b-PMMA, intending to later understand the impact of topology on phase behavior, domain spacing, and nanoconfinement in thin films. / 1 / Baraka Lwoya

Page generated in 0.1005 seconds