Spelling suggestions: "subject:"blood compatibility"" "subject:"blood kompatibility""
11 |
Design Exploration and Analysis of Carbon-Infiltrated Carbon Nanotube Vascular StentsSkousen, Darrell John 27 September 2013 (has links) (PDF)
The purpose of this research was to design, develop, and test coronary stent designs composed of carbon-infiltrated carbon nanotubes (CI-CNTs). Coronary stents currently have two major complications: restenosis and thrombosis. CI-CNT stents have potential to address both of these issues, and therefore may provide improved clinical outcomes. CI-CNT stent geometry is patterned using high-resolution photolithography that provide advantages in design possibilities.To develop a coronary stent, a standard design process was followed including: background, design specifications, concept generation, development, analysis, and testing. Background research was first completed and general design specifications for coronary stent performance were compiled. Multiple design concepts were generated, evaluated, and finally a design was selected. This stent design was further developed and optimized using analytical tools along with finite element analysis. This stent design used tapered struts in repeating segments to reduce stress and improve radial force. The design was modeled and analyzed as both a flat geometry as well as in a cylindrical configuration. Mechanics of materials equations and geometry specific finite element analysis were used to guide the final coronary stent design. The stent design was tested mechanically, and additional tests were performed to verify the blood compatibility of the CI-CNT material. The flat version of the stent design was manufactured and mechanically tested to verify performance. The performance of the cylindrical stent configuration was analyzed using an FE model of an atherosclerotic artery. This arterial FE model was created and validated by analyzing balloon angioplasty of a common stainless steel stent. The biocompatibility of CI-CNTs was explored and studied. Blood compatibility testing of CI-CNT samples was performed with results comparable in performance to stainless steel. A method of stent deployment was planned, and several other stent design concepts were analyzed. This research demonstrates that a functioning coronary stent can be manufactured from CI-CNTs. The optimized design has potential to address problems currently associated with stents. However, a major challenge for CI-CNT stent designs is meeting the design requirement of sufficient radial force. CI-CNT stents also need to have excellent blood compatibility to justify being used in stent applications.
|
12 |
Structure and blood compatibility of highly oriented poly(lactic acid)/thermoplastic polyurethane blends produced by solid hot stretchingZhao, X., Ye, L., Coates, Philip D., Caton-Rose, Philip D. 12 May 2013 (has links)
Yes / Highly oriented poly(lactic acid) (PLA)/thermoplastic polyurethane (TPU) blends were fabricated through solid hot stretching technology in an effort to improve the mechanical properties and blood biocompatibility of PLA as blood-contacting medical devices. It was found that the tensile strength and modulus of the blends can be improved dramatically by stretching. With the increase of draw ratio, the cold crystallization peak became smaller, and the glass transition and the melting peak moved to high temperature, while the crystallinity increased, and the grain size of PLA decreased, indicating of the stress-induced crystallization during drawing. The oriented blends exhibited structures with longitudinal striations which indicate the presence of micro-fibers. TPU phase was finely and homogeneously dispersed in the PLA, and after drawing, TPU domains were elongated to ellipsoid. The introduction of TPU and orientation could enhance the blood compatibility of PLA by prolonging kinetic clotting time, and decreasing hemolysis ratio and platelet activation.
|
13 |
Fibrillation of chain branched poly (lactic acid) with improved blood compatibility and bionic structureLi, Z., Zhao, X., Ye, L., Coates, Philip D., Caton-Rose, Philip D., Martyn, Michael T. 25 May 2015 (has links)
Yes / Highly-oriented poly (lactic acid) (PLA) with bionic fibrillar structure and micro-grooves was fabricated through solid hot drawing technology for further improving the mechanical properties and blood biocompatibility of PLA as blood-contacting medical devices. In order to enhance the melt strength and thus obtain high orientation degree, PLA was first chain branched with pentaerythritol polyglycidyl ether (PGE). The branching degree as high as 12.69 mol% can be obtained at 0.5 wt% PGE content. The complex viscosity, elastic and viscous modulus for chain branched PLA were improved resulting from the enhancement of molecular entanglement, and consequently higher draw ratio can be achieved during the subsequent hot stretching. The stress-induced crystallization of PLA occurred during stretching, and the crystal structure of the oriented PLA can be attributed to the α′ crystalline form. The tensile strength and modulus of PLA were improved dramatically by drawing. Chain branching and orientation could significantly enhance the blood compatibility of PLA by prolonging clotting time and decreasing hemolysis ratio, protein adsorption and platelet activation. Fibrous structure as well as micro-grooves can be observed for the oriented PLA which were similar to intimal layer of blood vessel, and this bionic structure was considered to be beneficial to decrease the activation and/or adhesion of platelets.
|
14 |
High orientation of long chain branched poly (lactic acid) with enhanced blood compatibility and bionic structureLi, Z., Ye, L., Zhao, X., Coates, Philip D., Caton-Rose, Philip D., Martyn, Michael T. 20 January 2016 (has links)
Yes / Highly-oriented poly (lactic acid) (PLA) with bionic micro-grooves was
fabricated through solid hot drawing technology for further improving the mechanical
properties and blood biocompatibility of PLA. In order to enhance the melt strength
and thus obtain high orientation degree, long chain branched PLA (LCB-PLA) was
prepared at first through a two-step ring-opening reaction during processing. Linear
viscoelasticity combined with branch-on-branch (BOB) model was used to predict
probable compositions and chain topologies of the products, and it was found that the
molecular weight of PLA increased and topological structures with star like chain
with three arms and tree-like chain with two generations formed during reactive
processing, and consequently draw ratio as high as1200% can be achieved during the
subsequent hot stretching. With the increase of draw ratio, the tensile strength and
orientation degree of PLA increased dramatically. Long chain branching and
orientation could significantly enhance the blood compatibility of PLA by prolonging
clotting time and decreasing platelet activation. Micro-grooves can be observed on the
surface of the oriented PLA which were similar to the intimal layer of blood vessel,
and such bionic structure resulted from the formation of the oriented shish kebab-like
crystals along the draw direction.
|
15 |
Structure and blood compatibility of highly oriented PLA/MWNTs composites produced by solid hot drawingLi, Z., Zhao, X., Ye, L., Coates, Philip D., Caton-Rose, Philip D., Martyn, Michael T. January 2013 (has links)
Yes / Highly oriented poly(lactic acid) (PLA)/multi-walled carbon nanotubes (MWNTs) composites were fabricated through
solid hot drawing technology in an effort to improve the mechanical properties and blood biocompatibility of PLA as
blood-contacting medical devices. It was found that proper MWNTs content and drawing orientation can improve the
tensile strength and modulus of PLA dramatically. With the increase in draw ratio, the cold crystallization peak became
smaller, and the glass transition and the melting peak of PLA moved to high temperature, while the crystallinity increased,
and the grain size decreased, indicating the stress-induced crystallization of PLA during drawing. MWNTs showed a
nucleation effect on PLA, leading to the rise in the melting temperature, increase in crystallinity and reduction of
spherulite size for the composites. Moreover, the intensity of (002) diffraction of MWNTs increased with draw ratio,
indicating that MWNTs were preferentially aligned and oriented during drawing. Microstructure observation
demonstrated that PLA matrix had an ordered fibrillar bundle structure, and MWNTs in the composite tended to
align parallel to the drawing direction. In addition, the dispersion of MWNTs in PLA was also improved by orientation.
Introduction of MWNTs and drawing orientation could significantly enhance the blood compatibility of PLA by prolonging
kinetic clotting time, reducing hemolysis ratio and platelet activation.
|
16 |
Rational design of glycosaminoglycan mimics using N-alkyl-N,N-linked urea oligomer containing polymersTaylor, Leeanne R. 10 October 2014 (has links)
No description available.
|
17 |
SURFACE MODIFICATION WITH POLYETHYLENE GLYCOL-PROTEIN CONJUGATES FOR IMPROVED BLOOD COMPATIBILITYAlibeik, Sara 10 1900 (has links)
<p>I put department up there as Biomedical Engineering. The full title should be: School of Biomedical Engineering.</p> / <p>The work presented in this thesis was focused on the surface modification of biomaterials with combinations of polyethylene glycol (PEG) and bioactive molecules (protein anticoagulants) for improved blood compatibility. Since the fate of biomaterials in contact with blood depends significantly on plasma protein-surface interactions, the objective of this work was to reduce non-specific protein adsorption using PEG and to promote specific protein interactions that could inhibit clot formation using protein anticoagulants as modifiers.</p> <p>Two anticoagulant molecules were used in this work: hirudin, a specific inhibitor of thrombin and corn trypsin inhibitor (CTI), a specific inhibitor of clotting factor XIIa. Gold, used as a model substrate, was modified with PEG and anticoagulant molecules using two methods referred to as sequential and direct. In the sequential method PEG was first immobilized on the surface and then the bioactive molecule was attached (conjugated) to the PEG. In the direct method, a PEG-bioactive molecule conjugate was first formed and then immobilized on the surface. Surfaces were characterized by contact angle, ellipsometry and x-ray photoelectron spectroscopy (XPS). Uptake of the bioactive molecules was measured by radiolabeling. Biointeraction studies included plasma protein adsorption, bioactivity assays using chromogenic substrates and clotting time assays. For PEG-hirudin and PEG-CTI surfaces (both direct and sequential) the protein resistance was similar to that of the PEG-alone surfaces. Despite having a lower density of bioactive molecule (both hirudin and CTI), the sequential surfaces showed superior bioactivity compared to the direct ones.</p> <p>To determine the optimal ratio of free PEG and bioactive molecule-PEG conjugate on the surface (best combination of protein resistance and bioactivity), PEG-CTI was immobilized on gold substrate with varying ratio of conjugated to free PEG using both direct and sequential methods. As the ratio increased, protein resistance was maintained while specific interactions (bioactivity) increased. The optimal composition appeared to be where all PEG molecules are conjugated to a CTI molecule.</p> <p>In the final part of this project, PEG and CTI were immobilized on polyurethane as a material with applicability to medical device construction. A sequential method was developed for this substrate. Comparison of the PEG-CTI surface with PEG only or CTI only surfaces indicated that the combination of PEG-CTI was effective both in reducing non-specific protein adsorption and promoting the specific interactions of CTI with its target plasma protein, factor XIIa. In fact, the presence of PEG improved CTI interactions with FXIIa compared with CTI only surfaces. Thus, sequential attachment of PEG and CTI may be effective for modifying polyurethane surfaces used in blood-contacting medical devices.</p> / Doctor of Philosophy (PhD)
|
18 |
Surface Modification of Polydimethylsiloxane with a Covalent Antithrombin-Heparin Complex for Blood Contacting ApplicationsLeung, Jennifer M. January 2013 (has links)
<p>Medical devices used for diagnosis and treatment often involve the exposure of the patient’s blood to biomaterials that are foreign to the body, and blood-material contact may trigger coagulation and lead to thrombotic complications. Therefore, the risk of thrombosis and the issue of blood compatibility are limitations in the development of biomaterials for blood-contacting applications. The objective of this research was to develop a dual strategy for surface modification of polydimethylsiloxane (PDMS) to prevent thrombosis by (1) grafting polyethylene glycol (PEG) to inhibit non-specific protein adsorption, and (2) covalently attaching an antithrombin-heparin (ATH) covalent complex to the distal end of the PEG chains to inhibit coagulation at the surface.</p> <p>Surface characterization via contact angle measurements confirmed reductions in hydrophobicity for the modified surfaces and x-ray photoelectron spectroscopy (XPS) indicated that heparin and ATH were present. The predisposition of PDMS to induce blood coagulation was investigated, and advantages of ATH over heparin in inhibiting coagulation on PDMS were demonstrated. Studies of protein interactions using radiolabelling and Western blotting demonstrated the ability of PEG-modified surfaces to resist non-specific protein adsorption, and the ability of ATH- and heparin-modified surfaces to specifically bind AT present in plasma, thereby providing anticoagulant activity. Through specific interactions with the pentasaccharide sequence on the heparin moiety, the ATH-modified surfaces bound AT more efficiently than the heparin-modified surfaces. Thromboelastography (TEG) was used to evaluate further the anticoagulant potential of the ATH-modified surfaces. It was found that coagulation occurred at a slower rate on the ATH-modified surfaces compared to unmodified PDMS, and the resulting clot was mechanically weaker. By creating a surface with bioinert and bioactive properties, non-specific protein adsorption was reduced and anticoagulation at the surface through specific protein binding was promoted. This dual PEO/ATH modification strategy may therefore offer an improved approach for the minimization of thrombosis on PDMS and biomaterial surfaces more generally.</p> / Master of Applied Science (MASc)
|
19 |
Modifizierung von Membranoberflächen zur Verbesserung der BlutkompatibilitätTischer, René 26 August 2008 (has links) (PDF)
Durch verschiedene Modifizierungen an der Blutkontaktseite von Hohlfasermembranen sollte eine Verbesserung der Bio- und Blutkompatibilität erreicht werden. Zur Modifizierung wurden verschiedene biologisch wirksame Moleküle verwendet. Weiterhin wurden zwei Modifizerungsstrategien verfolgt. Zum einen eine Modifizierung, bei welcher das Material der Hohlfasermembran vor deren Herstellung verändert wird. Und zum anderen eine selektive Modifizierung der Blutkontaktseite nach der Herstellung der Hohlfasermembran.
|
20 |
Modifizierung von Membranoberflächen zur Verbesserung der BlutkompatibilitätTischer, René 04 June 2008 (has links)
Durch verschiedene Modifizierungen an der Blutkontaktseite von Hohlfasermembranen sollte eine Verbesserung der Bio- und Blutkompatibilität erreicht werden. Zur Modifizierung wurden verschiedene biologisch wirksame Moleküle verwendet. Weiterhin wurden zwei Modifizerungsstrategien verfolgt. Zum einen eine Modifizierung, bei welcher das Material der Hohlfasermembran vor deren Herstellung verändert wird. Und zum anderen eine selektive Modifizierung der Blutkontaktseite nach der Herstellung der Hohlfasermembran.
|
Page generated in 0.0884 seconds