• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modulation of brain activity with low intensity focused ultrasound / Modulation de l’activité cérébrale par ultrasons focalisés de faible intensité

Constans, Charlotte 21 September 2018 (has links)
Devant l'impact des maladies neurodégénératives sur la société, les thérapies par ultrasons focalisés apparaissent comme des techniques prometteuses combinant non invasivité, précision spatiale millimétrique et capacité d'atteindre les structures profondes du cerveau. Cependant, des travaux sont encore nécessaires pour renforcer les effets de la neuromodulation, comprendre les mécanismes sous-jacents et contrôler la sûreté de la technique avant d'entreprendre des essais cliniques. Dans cette thèse, la propagation des ultrasons dans le cerveau de rongeurs et de singes a été étudiée numériquement afin d'estimer l'intensité acoustique dans le cerveau, la répartition spatiale des ondes dans la boîte crânienne et l'élévation de température. Afin d'évaluer physiologiquement les effets des ultrasons à l'échelle cellulaire, l'activité de neurones uniques a été mesurée sur des macaques éveillés pendant une neuromodulation ultrasonore. Puis, la durée de l’effet de modulation a été augmentée grâce à une prolongation du tir sur des singes exécutant une tâche visuelle. L'imagerie fonctionnelle par IRM a ensuite permis de faire ressortir des changements de connectivité entre l'aire stimulée et des régions du cerveau éloignées.Enfin, les avantages de la neurostimulation par ultrasons ont été combinés avec l'efficacité d'un agent neuroactif. En utilisant des microbulles conjointement aux ultrasons, la barrière hémato-encéphalique a été ouverte localement et réversiblement dans le cortex visuel de macaques anesthésiés pour permettre le passage d'un neurotransmetteur inhibiteur dans le cerveau. La baisse d'amplitude des réponses EEG du cortex visuel à des stimuli démontre la faisabilité de la délivrance locale et non invasive de neuromodulateurs dans le cerveau. Ainsi, les paramètres ultrasonores ont été optimisés grâce aux simulations numériques et à des expériences in vivo pour renforcer les effets de neuromodulation tout en contrôlant les effets indésirables, avec l'objectif de se diriger vers des applications thérapeutiques et proposer de nouveaux outils pour des études de connectivité cérébrale / Considering the extent of neurodegenerative diseases consequences on the society, focused ultrasound appears as a promising technique combining non-invasiveness, millimetric spatial accuracy and ability to reach deep brain structures. However, efforts still need to be made to amplify the effects of focused ultrasound neuromodulation, understand its mechanism and control the safety of the technique before moving towards human trials.The ultrasound propagation inside the brain of rodents and monkeys was first studied numerically to estimate the maximum intensity in the brain, the pressure distribution in the skull cavity and the thermal rise. To evaluate physiologically the ultrasound effects at the cellular level, the activity of individual neurons was measured on awake macaques during ultrasonic neuromodulation. To further increase the duration of the modulation, a longer sonication was tested successfully on macaques performing a visual task. Functional MRI was then used to highlight the connectivity changes between the stimulated area and distant cerebral regions. Finally, the advantages of ultrasound neurostimulation were combined with the efficiency of a neuroactive agent (GABA). Using microbubbles and ultrasound, the blood brain barrier was opened locally and reversibly in the visual cortex of anesthetized macaques to deliver an inhibitory neurotransmitter in the brain. The amplitude of the EEG response of the visual cortex to stimuli decreased after GABA injection, demonstrating the feasibility of delivering neuroactive drugs non-invasively and locally to any brain region.Overall, ultrasound parameters were optimized with both numerical tools and in vivo experiments to amplify neuromodulation effects while controlling the safety. This work opens the way to the development of novel therapeutic applications and new tools for connectivity studies
2

Transcranial Ultrasound Holograms for the Blood-Brain Barrier Opening

Jiménez Gambín, Sergio 02 September 2021 (has links)
[ES] El tratamiento de enfermedades neurológicas está muy limitado por la ineficiente penetración de los fármacos en el tejido cerebral dañado debido a la barrera hematoencefálica (BHE), lo que imposibilita mejorar la salud del paciente. La BHE es un mecanismo de protección natural para evitar la difusión de agentes potencialmente peligrosas para el sistema nervioso central. No obstante, la BHE se puede inhibir mediante ultrasonidos focalizados e inyección de microburbujas de forma segura, localizada y transitoria, una tecnología empleada mundialmente. La principal ventaja es su carácter no invasivo, siendo así muy atractiva y cómoda para el paciente. Normalmente, la zona cerebral enferma se trata en su parte central empleando un único foco. Sin embargo, enfermedades como el Alzheimer o el Parkinson requieren un tratamiento sobre estructuras de geometría compleja y tamaño elevado, situadas en ambos hemisferios cerebrales. Por tanto, la tecnología actual está muy limitada al no cumplir dichos requisitos. Esta tesis doctoral tiene como objetivo el desarrollo de una técnica novedosa, basada en hologramas acústicos, para resolver las limitaciones presentes en los tratamientos neurológicos empleando ultrasonidos. Se estudian las lentes acústicas holográficas impresas en 3D, que acopladas a un transductor mono-elemento, permiten el control preciso del frente de onda ultrasónico tanto para (1) compensar las distorsiones que sufre el haz hasta alcanzar el cerebro, como (2) focalizarlo simultáneamente en regiones múltiples y de geometría compleja o formando de vórtices acústicos, proporcionando así efectividad en tiempo y coste. Por ello, la investigación desarrollada en esta tesis abre un camino prometedor en el campo de la biomedicina que permitirá mejorar los tratamientos neurológicos, además de aplicaciones en neuroestimulación o ablación térmica del tejido. / [CA] El tractament de malalties neurològiques està molt limitat per la ineficient penetració del fàrmac en el teixit cerebral danyat a causa de la barrera hematoencefàlica (BHE), i així no és possible una millora de salut del pacient. La BHE és un mecanisme de protecció natural per a evitar la difusió d'agents potencialment perillosos per al Sistema Nervios Central. No obstant això, aquesta barrera es pot inhibir mitjancant una tecnologia emprada mundialment basada en ultrasons focalitzats i injeccio de microbombolles. El principal avantatge és el seu caràcter no invasiu, sent així molt atractiva i còmoda per al pacient, i permet obrir la BHE de manera segura, localitzada i transitòria. Normalment, la zona cerebral malalta es tracta en la seua part central, emprant un unic focus. No obstant això, malalties com l'Alzheimer o el Parkinson requereixen un tractament al llarg d'estructures de geometria complexa i grandària elevada, situades en tots dos hemisferis cerebrals. Per tant, la tecnologia actual està fortament limitada al no complir amb aquests requeriments. Aquesta tesi doctoral està enfocada a investigar i desenvolupar una tècnica nova, basada en hologrames acústics, per a solucionar les limitacions presents en els tractaments neurològics. Una lent acústica holograca de baix cost impresa en 3D acoblada a un transductor d'element simple permet el control precs del front d'ona ultrasònic punt per a (1) compensar les distorsions que pateix el feix en el seu camí cap al cervell, i (2) focalització simultània del feix en regions multiples i de geometria complexa, proporcionant aix un tractament efectiu en temps i cost. Per això, la investigació desenvolupada en aquesta tesi demostra la possibilitat de realitzar qualsevol tractament neurològic, a més d'aplicacions en la neuroestimulació o l'ablació tèrmica dins del camp biomèdic. / [EN] Treatments for neurological diseases are strongly limited by the inefficient penetration of therapeutic drugs into the diseased brain due to the blood-brain barrier (BBB), and therefore no health improvement can be achieved. In fact, the BBB is a protection mechanism of the human body to avoid the diffusion of potentially dangerous agents into the central nervous system. Nevertheless, this barrier can be successfully inhibited by using a worldwide spread technology based on microbubble-enhanced focused ultrasound. Its main advantage is its non-invasive nature, thus defining a patient-friendly clinical procedure that allows to disrupt the BBB in a safe, local and transient manner. Conventionally, the diseased brain structure has been targeted in its center, with a single focus. However, Alzheimer's or Parkinson's Diseases do require that ultrasound is delivered to entire, complex-geometry and large-volume structures located at both hemispheres of the brain. Therefore, current technology presents several limitations as it does not fulfill these requirements. This doctoral thesis aims to develop a novel technique based on using focused ultrasound acoustic holograms to solve the existing limitations to treat neurological diseases. In this dissertation, we study 3D-printed holographic acoustic lenses coupled to a single-element transducer that allow to accurately control the acoustic wavefront to both (1) compensate distortions suffered by the beam in its path to the brain, and (2) simultaneous focusing in multiple and complex-geometry structures or acoustic vortex generation, providing a time- and cost- efficient procedure. Therefore, the research carried out throughout this thesis opens a promising path in the biomedical field to improve the treatment for neurological diseases, neurostimulation or tissue ablation applications. / Acknowledgments to the Spanish institution Generalitat Valenciana, which funding grant allowed me to develop this doctoral thesis, and as well funded my research stay at Columbia University. The development of the entire thesis was supported through grant Nª. ACIF/2017/045. Particularly, the research carried out in Chapter 3 and Chapter 4 was possible thanks to and supported through grant BEFPI/2019/075. Action co-financied by the Agència Valenciana de la Innovació through grant INNVAL10/19/016 and by the European Union through the Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) of the Comunitat Valenciana 2014-2020 (IDIFEDER/2018/022). / Jiménez Gambín, S. (2021). Transcranial Ultrasound Holograms for the Blood-Brain Barrier Opening [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171373 / TESIS

Page generated in 0.1096 seconds