• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal and Structural Analysis of the Blow Moulded Air Duct

Jung, Hyunsung January 2013 (has links)
In this study, one of the plastic automotive parts, Air Duct, manufactured through blow moulding process is reviewed and investigated with a practical process point of view using structural mechanics approach. First, current blow moulding process was examined to find governing factors of the process which can be improved or adjusted for better quality control of finished product. Secondly, numerical analysis was conducted on the post-mould process in order to predict the deformation in the final products with properly assumed initial and boundary conditions. The simulation results showed that the degree of warpage under current blow moulding process could be predicted at a reasonable accuracy. It was also discovered that the distortions of the holes are strongly dependent on it location and surrounding, and the current cooling method should be improved to improve the quality. Based on the simulation results and literature survey, a better post-mould cooling method was suggested. In addition, the problem in cooling system was identified, and redesigning scheme was recommended.
2

Thermal and Structural Analysis of the Blow Moulded Air Duct

Jung, Hyunsung January 2013 (has links)
In this study, one of the plastic automotive parts, Air Duct, manufactured through blow moulding process is reviewed and investigated with a practical process point of view using structural mechanics approach. First, current blow moulding process was examined to find governing factors of the process which can be improved or adjusted for better quality control of finished product. Secondly, numerical analysis was conducted on the post-mould process in order to predict the deformation in the final products with properly assumed initial and boundary conditions. The simulation results showed that the degree of warpage under current blow moulding process could be predicted at a reasonable accuracy. It was also discovered that the distortions of the holes are strongly dependent on it location and surrounding, and the current cooling method should be improved to improve the quality. Based on the simulation results and literature survey, a better post-mould cooling method was suggested. In addition, the problem in cooling system was identified, and redesigning scheme was recommended.
3

Investigation of recycled PET and its application for blow moulded containers requiring thermal stability at elevated tempoeratures.

Patuto, Joseph, jpatuto@bigpond.net.au January 2008 (has links)
Polyethylene Terephthalate (PET) has become the preferred material of choice for many packaging applications. A preference over glass due to its low weight, similar transparency to glass and cost consideration, including the availability of recycled PET feedstock via kerbside collection has provided newer opportunities for hot-fill applications. Ostensibly, this material is used for beverage markets requiring cold and hot filling (85 oC) of liquid foods. However due to the poor thermal stability of PET - due to its low glass transition temperature - an increase in elevated temperatures limits the number of market segments the material can be utilised. Current practices incorporate the heat-set process, aimed at improving the crystallisation kinetics within the amorphous and crystalline region. This body of work incorporates a single stage Injection Stretch Blow Moulding machine (ISBM). Modifications to conventional carbonated soft drink (CSD) beverage containers to include heat-set capabilities are incorporated. The current research study investigates the potential benefits of RPET blends for improving thermal stability at elevated temperatures. This study investigates changes in mechanical properties which include • Youngs modulus, • top load strength, • burst strength, • Thermal analysis specifically investigating changes in • Glass transition temperature, • enthalpy changes due to heat-set conditions • Percentage crystallinity changes as a function of heat-set conditions Rheological characteristics to all materials used were investigates. Furthermore, changes in the physical properties to each PET beverage container were investigated which include; • process shrinkage (S1), • hot-fill shrinkage (S2) • Density changes via optimised DoE parameters. A combination of cold (80 oC) and hot moulds (150 oC) as measured via Forward Looking Infrared (FLIR) at the exterior to the blow mould and their affect on percentage crystallinity was studied. Preform surface temperature (PST) and strain induced crystallinity, assisting in molecular relaxation is analysed. Upon completion to an exhaustive experimental ISBM trial, a DoE software package - in this case Echip - was used to analyse and predict optimised hot-fill shrinkage values of 2.5 percent with a maximum constrained RPET blend value totalling 40 percent. ISBM optimised conditions demonstrated advantages when combining an increased preform surface temperature, RPET blends and optimised ISBM process conditions as indicated via the DoE at low heat-set temperatures.
4

Optimisation of Petaloid Base Dimensions and Process Operating Conditions to Minimize Environmental Stress Cracking in Injection Stretch Blow Moulded PET Bottles

Demirel, Bilal, bilal.demirel@student.rmit.edu.au January 2009 (has links)
ABSTRACT Injection stretch blow moulded PET bottles are the most widely used container type for carbonated soft drinks. PET offers excellent clarity, good mechanical and barrier properties, and ease of processing. Typically, these bottles have a petaloid-shaped base, which gives good stability to the bottle and it is the most appropriate one for beverage storage. However, the base is prone to environmentally induced stress cracking and this a major concern to bottle manufacturers. The object of this study is to explain the occurrence of stress cracking, and to prevent it by optimising both the geometry of the petaloid base and the processing parameters during bottle moulding. A finite element model of the petaloid shape is developed in CATIA V5 R14, and used to predict the von Mises stress in the bottle base for different combinations of three key dimensions of the base: foot length, valley width, and clearance. The combination of dimensions giving the minimum stress is found by a statistical analysis approach using an optimisation and design of experiments software package ECHIP-7. A bottle mould was manufactured according to the optimum base geometry and PET bottles are produced by injection stretch blow moulding (ISBM). In order to minimise the stresses at the bottom of the bottle, the ISBM process parameters were reviewed and the effects of both the stretch rod movement and the temperature profile of the preform were studied by means of the process simulation software package (Blow View version 8.2). Simulated values of the wall thickness, stress, crystallinity, molecular orientation and biaxial ratio in the bottle base were obtained. The process parameters, which result in low stress and uniform material in the bottle base, are regarded as optimum operating conditions. In the evaluation process of the optimum bottle base, bottles with standard (current) and optimized (new) base were produced under the same process conditions via a two-stage ISBM machine. In order to compare both the bottles, environmental stress crack resistance, top load strength, burst pressure strength, thermal stability test as well as crystallinity studies ¬¬¬via modulated differential scanning calorimetry (MDSC) and morphology studies via environmental scanning electron microscopy (ESEM) and optical microscopy were conducted. In this study carried out, the new PET bottle with the optimised base significantly decreased the environmental stress cracking occurrence in the bottom of the bottle. It is found that the bottle with optimised base is stronger than the bottle with standard base against environmental stress cracking. The resistance time against environmental stress cracking are increased by about % 90 under the same operating process conditions used for standard (current) bottles; and by % 170 under the optimised process conditions where the preform re-heating temperature is set to 105 oC.
5

Crazing and yielding in polyethylene under impact

Hazra, Sumit Kumar January 2001 (has links)
No description available.
6

Effizienzsteigerung des Kunststoffblasformprozesses durch Optimierung des Drucklufteinsatzes

Zipplies, Daniel 21 October 2020 (has links)
Die ökologischen und ökonomischen Anforderungen der heutigen Zeit verlangen energieeffiziente Verarbeitungsverfahren. Vor diesem Hintergrund befasst sich diese Arbeit mit dem Kunststoffblasformprozess, der neben dem für die Kunststoffverarbeitung typischen hohen Energiebedarf zusätzlich ein hohes Maß an energieintensiv zu erzeugender Druckluft erfordert. Ausgehend von einer ausführlichen Energiebilanz des Extrusionsblasformprozesses wurde der zur Formgebung (Blasluft) und zur inneren Blasteilkühlung (Spülluft) benötigte Drucklufteinsatz als eine energetische Schwachstelle identifiziert. Zur Reduzierung des erforderlichen Druckluftaufwands bei der Formgebung wird die Prozessrückführung der Blasluft detailliert betrachtet. Weiterhin wird ein Speichersystem vorgestellt, das eine sekundäre Nutzung der bei der inneren Blasteilkühlung kontinuierlich anfallenden druckbehafteten Prozessabluft ermöglicht. Abschließend wird ein Ansatz zum effektiven Drucklufteinsatz bei der inneren Kühlung flaschenförmiger Blasteile aufgezeigt, der durch gezieltes Ausnutzen von für den Wärmeübergang günstiger Strömungsverhältnisse eine Kühlzeitverkürzung sowie eine Reduzierung des Druckluftaufwands verspricht.:1 Einleitung 2 Prozessanalyse des Blasformverfahrens 3 Motivation, Zielstellung und Aufbau der Arbeit 4 Energetische Bilanzierung des Extrusionsblasformverfahrens 5 Reduzierung des Druckluftaufwands bei der Formgebung 6 Sekundärnutzung der zur inneren Blasteilkühlung verwendeten Druckluft 7 Effektive Druckluftnutzung bei der inneren Kühlung flaschenförmiger Blasteile 8 Zusammenfassung und Ausblick / Today's ecological and economic requirements demand energy-efficient processing methods. Against this background, this thesis deals with the plastic blow moulding process, which, in addition to the high energy demand typical for plastics processing, requires a high degree of energy-intensive compressed air. Based on a detailed energy balance of the extrusion blow moulding process, the use of compressed air required for forming (blow air) and for internal cooling of the blowing parts (purge air) was identified as an energetic weak point. In order to reduce the amount of compressed air required for forming, a feedback process used to recycle the blowing air is investigated in detail. Furthermore, a storage system will be presented which allows a secondary use of the pressurized process exhaust air, which is continuously generated during the internal cooling of the blowing part. Finally, an optimization approach for the effective use of compressed air for the internal cooling of bottle-shaped blow-moulded parts is presented, which promises a shortening of the cooling time and a reduction of the compressed air required through the targeted use of favourable flow conditions for heat transfer.:1 Einleitung 2 Prozessanalyse des Blasformverfahrens 3 Motivation, Zielstellung und Aufbau der Arbeit 4 Energetische Bilanzierung des Extrusionsblasformverfahrens 5 Reduzierung des Druckluftaufwands bei der Formgebung 6 Sekundärnutzung der zur inneren Blasteilkühlung verwendeten Druckluft 7 Effektive Druckluftnutzung bei der inneren Kühlung flaschenförmiger Blasteile 8 Zusammenfassung und Ausblick

Page generated in 0.0778 seconds