• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hierarchical Grown Bluetrees ¡V An Effective Topology for Bluetooth Scatternets

Huang, Chao-Chieh 30 July 2003 (has links)
Bluetooth is a promising technology for short-range wireless communication and networking, mainly used as a replacement for connected cables. Since the Bluetooth specification only defines how to build a Piconet, several solutions have been proposed to construct a Scatternet from the Piconets in the literatures. The process of constructing a Scatternet is called the Scatternet formation. We find that a tree shape Scatternet, called Bluetree, has three defects: First, it lacks efficiency in routing because the Bluetree may form a skewed tree instead of a balanced tree, resulting in serious longer routing path. Second, the parent nodes in Bluetree are very likely to become the bottlenecks of communication. Third, it is not reliable. When a parent node is lost, several separate subtrees will be caused. In this thesis, we present a method that generates the Bluetree hierarchically; that is, the nodes are added into the Bluetree level by level. This hierarchical grown bluetree (HGB) topology resolves the defects of conventional Bluetree. During growing up, HGB always remains balanced so as to preserve shorter routing paths. Besides, the connections between the siblings provide alternative paths for routing. As a result, the traffic load at parent nodes can be greatly improved and only two separate parts will be induced if a parent node is lost. Better reliability is therefore achieved.

Page generated in 0.0237 seconds