• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Soudage de bois feuillus par friction rotationnelle

Belleville, Benoît 19 April 2018 (has links)
Les différentes colles utilisées actuellement par l’industrie du meuble au Canada nécessitent des temps de polymérisation constituant un goulot dans la production des meubles et limitant l’atteinte de la production unitaire. Ces adhésifs synthétiques généralement issus de la pétrochimie nécessitent énormément d’énergie lors de leur confection. L’utilisation de connecteurs métalliques ou plastiques, quant à elle, limite les phases de découpage et sablage subséquentes. La présence d’adhésifs et connecteurs, considérés comme une source de contamination tant dans des procédés de valorisation par la filière énergétique que dans les procédés existants de recyclage des produits du bois, limite la recyclabilité du produit rendant sa gestion en fin de vie utile très difficile. L’assemblage de composants en bois par la technique de soudage par friction rotationnelle est une alternative intéressante aux colles et connecteurs métalliques dans l’industrie du meuble. Le soudage du bois permet d’offrir un produit minimisant l’impact environnemental d’une entreprise alors que ce mode d’assemblage ne constitue pas une contrainte à la gestion en fin de vie du produit. La recyclabilité ou revalorisation des assemblages soudés permet d’offrir un produit en mesure de séquestrer du carbone plus longtemps ou encore de ralentir la réémission de celui-ci dans l’atmosphère. Le présent projet de recherche visait à évaluer l’aptitude du soudage par friction rotationnelle pour la fabrication de panneaux lamellés-soudés à usage intérieur. L’objectif était de concevoir des panneaux aussi performants que leur équivalent collé tout en réduisant les coûts de conception en éliminant l’utilisation d’adhésifs synthétiques, conférant du même coup un aspect écologique et durable au produit. Les objectifs spécifiques du projet étaient: de déterminer les paramètres optimaux variables du soudage rotationnel pour deux essences feuillues canadiennes soit l’érable à sucre et le bouleau jaune; de caractériser les propriétés mécaniques des joints soudés ainsi que la stabilité dimensionnelle de panneaux lamellés-soudés; de procéder à la caractérisation de la zone de fusion afin de comprendre les phénomènes physico-chimiques en cause afin de les mettre en relation avec les performances mécaniques des assemblages; d’analyser les émanations volatiles produites lors du soudage afin d’évaluer l’impact environnemental de ce procédé. ii Ce projet de recherche à fait l’objet d’une collaboration avec FPInnovations, EQMBO-Entreprises et le Centre de recherche industrielle du Québec (CRIQ) qui a conçu et assemblé un banc d’essai spécifiquement pour le panneautage par le procédé de soudage rotationnel. Considérant cette collaboration, une tangente industrielle a été donnée à la méthodologie employée afin de répondre aux objectifs des partenaires. Le banc d’essai a d’ailleurs fait l’objet d’ajustements et d’améliorations tout au long du projet en vue de son optimisation pour un transfert de cette technologie en milieu industriel. Le matériel utilisé pour cette étude visait également à refléter la matière première utilisée chez les fabricants de produits d’apparence en bois. Le banc d’essai conçu par le Centre de recherche industrielle du Québec (CRIQ) a permis d’étudier l’effet de différents paramètres sur la qualité de soudage pour l’érable à sucre (Acer saccharum) et le bouleau jaune (Betula alleghaniensis). Les facteurs à l’étude étaient: l’essence (érable à sucre et bouleau jaune), la vitesse de rotation du goujon (1000 tours min-1, 1500 tours min-1 et 2500 tours min-1), la vitesse d’insertion du goujon (12,5 mm s-1, 16,7 mm s-1 et 25,0 mm s-1) et enfin l’angle d’insertion par rapport au fil du bois (insertion tangentielle à 0° par rapport au fil du bois et insertion radiale à 90° par rapport au fil du bois) pour un total de 36 combinaisons de facteurs. Dix répétitions pour chacune des combinaisons ont été effectuées pour un total de 360 soudages. Des essais mécaniques de traction appliqués à la zone de soudage ont permis de connaître les paramètres d’assemblage optimaux pour les deux essences considérées. Des mesures de température effectuées au moyen d’un système d’acquisition munis de thermocouples ont également été effectuées. Les résultats obtenus démontrent une interaction significative entre l’essence, la vitesse de rotation et la vitesse d’insertion. L’érable à sucre a permis de produire les joints soudés ayant les meilleures propriétés mécaniques en traction. Les meilleurs résultats ont été obtenus avec une vitesse rotationnelle de 1000 tours min-1 tant pour l’érable à sucre que le bouleau jaune. Une vitesse d’insertion de 25,0 mm s-1 s’est avérée optimale pour le soudage de l’érable à sucre. Dans le cas du bouleau jaune, une vitesse d’insertion de 16 mm s-1 a permis de produire les joints soudés les plus solides pour cette essence. L’angle d’insertion par rapport au fil du bois n’a pas eu d’effet significatif sur les essais mécaniques en iii traction. L’essence et la vitesse rotationnelle ont eu un effet significatif sur la température maximale à l’interface lors du soudage. Des températures maximales à l’insertion de 244 ˚C et 282 ˚C ont été mesurées pour l’érable à sucre et le bouleau jaune à partir des paramètres des soudages optimaux pour chaque essence, respectivement. Cette étude a également examiné la faisabilité du panneautage pour des applications d’apparence intérieures à partir de la technologie de soudage du bois par friction rotationnelle. Pour chacune des essences étudiées, douze panneaux lamellés-soudés de 30 mm x 225 mm x 300 mm ont été fabriqués. Six panneaux lamellés-collés de mêmes dimensions, assemblés avec une émulsion de type acétate de polyvinyle (PVA), ont été assemblés pour chaque essence étudiée pour fins de comparaison. Des essais de flexion statique en trois points ont été effectués afin d’adresser la performance mécanique des assemblages. Des essais non destructifs sous caisson climatiseur ont également été effectués afin comprendre le comportement d’un panneautage lamellé-soudé sous atmosphère alternativement humide (20 °C et 80 % d’humidité relative) correspondant aux conditions estivales et sec (20 °C et 20 % d’humidité relative) pour des conditions hivernales afin d’observer les déformations ou délaminations possibles pouvant se produire sur les panneautages. Des forces maximales à la rupture en flexion de 1,79 kN et 1,70 kN ont été obtenues pour les panneaux lamellés-soudés de bouleau jaune et d’érable à sucre, respectivement. La fracture se produisait généralement dans la section transversale du goujon. Aucun déplacement des goujons n’a été observé à l’interface de soudage. De la délamination dans les panneautages a été constatée au terme des cycles à atmosphère variable autant pour les constructions soudées que collées. Toutefois, celle-ci n’a pas affecté les propriétés en flexion des panneaux lamellés-soudés. Les résultats confirment le potentiel du soudage par friction rotationnelle pour la production de panneaux lamellés-soudés à partir d’essences feuillues canadiennes. La caractérisation de la ligne de soudage a permis de saisir certains aspects fondamentaux liés au soudage du bois par friction rotationnelle. Grâce aux méthodes de pyrolyse couplée à un chromatographe en phase gazeuse et un spectromètre de masse (Py-GC/MS), de spectroscopie infrarouge à transformée de Fourier sur un montage de réflexion totale iv atténuée (ATR-FTIR) et de spectrométrie de photoélectrons induits par rayon-X (XPS), il a été possible d’évaluer les changements thermochimiques durant le soudage par friction rotationnelle chez l’érable à sucre et le bouleau jaune. Le matériel ligneux de référence et le matériel à l’interface de soudage de deux pièces de bois, un goujon et un substrat, ont été comparés dans le but d’expliquer les différences de propriétés mécaniques entre les essences. Les émissions volatiles libérées durant le procédé de soudage ont été analysées en reproduisant le traitement thermique par Py-GC/MS de même qu’avec un chromatographe en phase gazeuse avec détection de conductivité thermique et d’ionisation de la flamme (GC/TCD-FID) afin d’analyser les émanations captées lors du soudage. Les résultats démontrent que le procédé thermique lié au soudage du bouleau jaune et de l’érable à sucre dégrade les hémicelluloses et affecte les polymères de la lignine via une dépolymérisation. L’efficacité du procédé de soudage est ainsi directement liée aux propriétés initiales des constituants du bois, essentiellement la lignine et les glucides. Les changements liés à la lignine à l’interface de soudage ont été plus nombreux chez l’érable à sucre que le bouleau jaune corroborant les résultats obtenus lors des essais mécaniques. Les proportions d’émission volatile ont été similaires pour nos deux essences. L’analyse des composés organiques volatils a permis de conclure que les émanations produites lors du soudage sont négligeables et ne présentaient pas de risque pour la santé humaine ou pour l’environnement. / Gluing is a valid and extensively used alternative to paneling in the furniture industry. However, adhesives, which are generally produced by the petrochemical industry, require curing times (up to 24 h) and multiple handling, which limits the production flow and flexibility required for customized production. Moreover, they are generally derived from non-renewable fossil resources, making the end product expensive from both an ecological and economic standpoint. They also pose a recovery problem, as they are considered a source of contamination in biomass energy methods and wooden waste recycling. Wood welding can shortens the production cycle and reduces dependence on the petrochemical industry. By replacing synthetic resins with the intrinsic lignin binders present in lignocellulosic fibre materials, the depletion of fossil resources could be abated. Wood, which is a renewable, CO2 neutral raw material, can play a key role in sustainable development and have a significant impact on responsible residual waste management. This study examines the suitability of wood welding technology for producing composite panels for furniture applications with two Canadian hardwood species, sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis). The specific objectives of the present study were: to define optimal wood-dowel welding parameters for two North American hardwood species frequently used for indoor appearance products: sugar maple and yellow birch; to produce wood-welded panels made from sugar maple and yellow birch using a specifically designed panelling machine; to assess the flexural properties of the wood-welded panels, considering the required load-bearing capacity for a typical standard panel used for furniture components; to assess the performance of the wood-welded panels at standard moisture conditions and after humidity cycling; to investigate chemical changes occurring at the welding interface; and to determine the gases released during welding under conditions of optimised welding parameters. High-speed rotation-induced mechanical friction wood-dowel welding was performed using a panelling machine specifically designed at the Centre de Recherche Industrielle du Québec. A comparative analysis of wood-dowel welding parameters was performed. The investigated parameters for both species were grain orientation (tangential or radial), vi rotational speed (1000 rpm, 1500 rpm, and 2500 rpm) and insertion speed (12.5 mm s-1, 16.7 mm s-1, and 25.0 mm s-1) for 36 possible combinations. Ten samples were prepared for a total of 360 wood welded specimens. Optimal welding mechanical properties were determined from the dowel withdrawal strength using a standard tensile strength test. Temperature profile measurements at the interface during rotational wood-dowel welding were also carried out. Results revealed a significant interaction between species, rotational speed, and insertion speed. Sugar maple produced wood joints with higher withdrawal strength than yellow birch. The best results for sugar maple and yellow birch were obtained with a rotational speed of 1000 rpm. A 25 mm s-1 insertion speed produced significantly stronger welded joints in sugar maple than at 12.5 mm s-1. For yellow birch, a 16.7 mm s-1 insertion speed provided the best results. Both species and rotational speed had a significant effect on peak temperature at the interface during welding. Peak welding temperatures with optimal parameters were 244˚C and 282˚C for sugar maple and yellow birch, respectively. This study examined the suitability of wood welding technology for producing composite panels for furniture applications with sugar maple and yellow birch. For each species, twelve 30 mm x 225 mm x 300 mm panels were manufactured using a panelling machine specifically designed for rotational wood-dowel welding with optimized parameters. Six edge-glued panels of the same size were manufactured from each species using a non-structural polyvinyl acetate (PVA) adhesive and tested for comparative purposes. The experimental program included three-point bending at 255-mm span and visual inspection of the panels to assess performance at standard moisture conditions and after an aging cycle with variable relative humidity. Cycling conditions were 20 °C and 80% relative humidity (RH) and 20 °C and 20% RH. Wood-welded panel bending properties were not affected by wood species, with average load at break of 1.79 kN and 1.70 kN for yellow birch and sugar maple, respectively. Fractures consistently occurred in the dowels as splintering tension, and no slippage was observed along the welded interface. No distortion was observed in wood-welded panels following humidity cycling. The cycling did not negatively affect the panel’s bending properties. Edge splitting was observed in both wood-welded and glued panels due to wood vii slat shrinkage in response to dry conditions. The results confirm that wood-dowel welding could be suitable for producing panels from certain North American species. Thermochemical changes during wood-dowel welding were investigated. The original reference wood sample and the welded interface between two bonded wood pieces, a dowel and a substrate, were compared to explain differences in mechanical properties between species. Pyrolysis gas chromatography - mass spectrometry (Py-GC/MS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray photoelectron spectroscopy (XPS) were used. The gases emitted during wood welding were determined by Py-GC/MS and gas chromatography coupled with a thermal conductivity detector and a flame ionization detector (GC-TCD/FID). The results of this investigation showed that thermal treatment of birch and maple wood degrades hemicelluloses through acid hydrolysis and dehydration mechanism and affects lignin polymer through depolymerisation reactions. The gas emission results show similar proportions of non-condensable gases for the two studied species. Most of the volatile compounds identified during pyrolysis were non-toxic products derived from degradation of wood polymers. No carbon monoxide was produced during welding, and only traces of hydrogen and carbon dioxide were present. The proportion of detected volatile organic compounds was relatively low and below the lower exposure limits. Hence, wood welding appears to be an ecological technique for assembling furniture components and other applications, and is not harmful for human health.
2

Soudage du bois par rotation

Rodriguez Baca, Georgina Renée 16 April 2018 (has links)
L'assemblage de pièces de bois est un préalable à la réalisation de produits finaux dans les domaines des armoires de cuisines et de l'ameublement. Celui-ci est réalisé principalement soit par le biais de connecteurs (métalliques ou en bois), soit par l'utilisation exclusive de colles. Dans ce projet, le soudage du bois est effectué par insertion d'un goujon en rotation à haute vitesse dans un substrat-bois dans un trou pré-percé. La friction provoque une augmentation de la température qui est à l'origine de la transformation thermique du bois et de la formation d'un joint solide entre les deux morceaux de bois. Dans ce travail, l'étude a été effectuée sur deux espèces canadiennes feuillues couramment utilisées pour le mobilier: l'érable à sucre (Acer saccharum) et le bouleau jaune (Betula alleghaniensis). L'objectif était d'étudier l'influence de plusieurs paramètres, tels que l'espèce, l'orientation du grain du substrat, la vitesse de rotation du goujon et le diamètre du trou pré-percé, sur la résistance à la traction des joints soudés afin de déterminer la combinaison permettant d'obtenir le joint le plus résistant. Les résultats montrent que les deux espèces de bois utilisées dans ce procédé de soudage du bois permettent d'obtenir des joints ayant une résistance à la traction comparable à celle obtenue avec la colle (PVAc) couramment utiliseée dans le mobilier d'intérieur. De plus, nos essais ont démontré que le bois soudé présente une meilleure résistance à l'eau que le bois collé. L'analyse par rayons-X confirme par ailleurs une augmentation de la densité de la matière interfaciale lors de la formation du joint entre le substrat de bois et le goujon et met en évidence la variabilité entre les deux espèces avec un profil de densité à l'interface plus uniforme dans le cas de l'érable. Les images par microscopie électronique à balayage confirment qu'un soudage a bien eu lieu dans la zone de contact des deux pièces de bois. Toutefois, même si l'interface est bien soudée, il y a des cas pour lesquels les valeurs de résistance à la traction sont faibles (en particulier pour le bouleau), .
3

Modifications chimiques induites par le soudage du bois par rotation des goujons à haute vitesse

Sun, Ying 16 April 2018 (has links)
Le soudage du bois par rotation à haute vitesse est une technique qui a été développée durant les cinq dernières années. La rotation à haute vitesse permet le soudage du goujon en bois, sans ajout d’adhésif, avec une force considérable. Le procédé de soudage est basé sur la friction mécanique créée par la haute vitesse de rotation. Ce procédé a démontré être aussi efficace que le procédé de soudage par vibration, induisant une température favorisant le ramollissement des constituants structuraux, principalement du matériau polymère amorphe dans la structure du bois, notamment, la lignine, mais aussi les hémicelluloses. Ceci a pour conséquence une forte densification au niveau de l'interface soudée. L'objectif de cette étude était d'analyser les changements chimiques qui se produisent lors du soudage par rotation avec des goujons et des substrats en bois provenant de deux essences feuillues canadiennes : l'érable à sucre (Acer saccharum) et le bouleau jaune (Betula alleghaniensis). Les analyses chimiques ont été effectuées en utilisant la pyrolyse couplée à la chromatographie gazeuse GC et à la spectrométrie de masse MS. L’étude de la modification structurale du bois après soudage a été complétée par l’utilisation des techniques DSC et XPS. Les différences en composition chimique du bois entre deux essences influencent l’efficacité du procédé de soudage. L’augmentation de la température à l’interface provoque une plus forte dégradation des hémicelluloses comparée à celle de la cellulose et de la lignine. La lignine est modifiée dans une certaine gamme de température. Les méthodes traditionnelles d'analyse chimique ont été utilisées pour déterminer la composition chimique de l'érable à sucre et du bouleau jaune. Les résultats montrent que la teneur en lignine de l'érable est plus élevée que celle du bouleau, tandis que la quantité d'hémicelluloses est plus faible que celle du bouleau. La composition en cellulose des deux feuillus est similaire. Les résultats de l'analyse chimique peuvent expliquer en partie les résultats des tests mécaniques de traction qui démontrent que l’utilisation du bois de l'érable permet d’obtenir une meilleure qualité de soudage qu’avec le bois du bouleau. Les modifications chimiques qui se produisent lors du soudage par rotation.ont été examinées par l’’analyse comparative par Pyrolyse-GC/MS, DSC et XPS, d’un échantillon provenant du substrat en bois dans la zone non soudée (bois de référence) avec celle d’un échantillon provenant de la zone soudée. Les résultats de ces analyses indiquent que les différences de performances mécaniques obtenues avec les deux essences sont essentiellement dues due aux différences dans les structures de la lignine d'origine de deux essences ainsi qu’aux différences de températures de soudage mesurées. L’analyse détaillée des composés identifiés par Py-GC-MS, ainsi que les ratios S/G et L/C est présentée dans ce ratio. La haute température à l’interface de soudage relevée dans le cas de l'érable à sucre pourrait être responsable d'une meilleure fusion des polymères du bois dans cette zone. Ceci explique une plus grande présence de dérivés des hémicelluloses due à la formation d'un nouveau complexe Lignine-polysaccharide (LCC) dans le matériau soudé. / Wood welding by high speed rotation is a technique that has been developed during the last five years. High-speed rotation-induced wood dowel welding, without any adhesive, is shown to rapidly yield wood joints of considerable strength. The welding process is based on mechanical friction created by the high speed rotation. This method has proven to be as effective as vibration welding process, causing a temperature favoring the softening of the main constituents, mainly amorphous zones of cells connecting the polymer material in the structure of wood, including lignin, but also hemicelluloses. This results in high densification of the bonded interface. The goal of this study was to analyze the chemical changes that occur during the rotational welding with dowels of two Canadian hardwood species: sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis). Chemical analysis was performed using pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS). The study of the structural modification of wood after welding was conducted using DSC and XPS techniques. The differences in chemical composition of both wood species influence the effectiveness of the welding process. Increasing the temperature at the interface causes a higher degradation of hemicelluloses compared to cellulose and lignin. Lignin is softened in a certain range of temperature. The traditional chemical analysis methods were used in this work to determine the chemical compositions of sugar maple and yellow birch. The results show that the lignin content of the maple is higher than that of birch, while the amount of hemicelluloses is lower than that of birch. The contents of cellulose in both hardwood species are very similar. The results of chemical analysis may partly explain the results of mechanical tensile tests which demonstrate that the maple wood yields a better welding quality as opposed to the birch wood. The chemical changes was examined which occur during welding in rotation. The analyses performed separately on wood substrate (reference wood) and welded material by using pyrolysis-GC/MS, DSC and XPS techniques. It is shown that the differences in mechanical performances of the two welded woods are due mainly to the differences in original lignin structures as well as in the welding temperatures determined for the two wood species. The detailed analysis of compounds identified by Py-GC-MS, the ratios S/G and L/C have been discussed. The higher temperature welding found in cases of sugar maple might be responsible for a better miscibility of polymers of wood in the welding zone. This explains the greater presence of hemicellulose derivatives with the formation of a new lignin-polysaccharide complex (LCC) in the welded material.

Page generated in 0.0463 seconds