Spelling suggestions: "subject:"dois morte"" "subject:"dois sorts""
1 |
Vers une meilleure estimation des stocks de carbone dans les forêts exploitées à Diptérocarpées de Bornéo / Towards better estimates of carbon stocks in Bornean logged-over Dipterocarp forestsRozak, Andes 29 November 2018 (has links)
Les forêts tropicales constituent le principal réservoir de biodiversité et de carbone (C). Cependant, la plupart des forêts tropicales, en particulier les forêts de Bornéo en Asie du Sud-Est, subissent une pression intense et sont menacées par des activités anthropiques telles que l'exploitation forestière, l'industrie minière l’agriculture et la conversion en plantations industrielles. En 2010, la superficie des forêts de production de Bornéo était de 26,8 millions d’ha (environ 36% de la superficie totale de l’île, dont 18 millions ha (environ 24%) déjà exploités. Par conséquent, les forêts de production occupent donc une place importante à Bornéo et jouent un rôle essentiel dans la compensation des biens fournis et la maintenance des services écosystémiques, tels que la conservation du C et de la biodiversité.L’exploitation sélective réduit la biomasse aérienne et souterraine par l’élimination de quelques grands arbres, et augmente les stocks de bois mort par des dommages collatéraux. En créant des trouées dans la canopée, le microclimat dans les sous-étages et au sol change localement et accélèrent la décomposition de la litière et de la matière organique. L'importance des dégâts, de l'ouverture de la canopée et de la rapidité du rétablissement du C s'est avéré principalement liée à l'intensité de l'exploitation forestière. Cependant, les évaluations empiriques de l'effet à long terme de l'intensité de l'exploitation forestière sur l'équilibre du C dans les forêts de production restent rares.La présente thèse se concentre principalement sur l'évaluation de l'effet à long terme de l'intensité de l'exploitation forestière sur la séquestration de carbone dans une forêt à Diptérocarpées de Nord Bornéo (District de Malinau, Kalimantan Nord) exploitée en 1999/2000. Cinq principaux réservoirs de C, à savoir le C aérien dans les arbres vivants (AGC), le C souterrain dans les arbres vivants (BGC), le bois mort, la litière et le C organique du sol (SOC) ont été estimés le long d’un gradient d'intensité d'exploitation (0-57% de la biomasse perdue).Nos résultats ont montré que les stocks totaux de C, 16 ans après l'exploitation, variaient de 218 à 554 Mg C ha-1 avec une moyenne de 314 Mg C ha-1. Une différence de 95 Mg C ha-1 a été observée entre une faible intensité d'exploitation forestière (<2,1% de la biomasse initiale perdue) et une intensité d'exploitation élevée (>19%). La plus grande partie du C (environ 77%) était présente dans les arbres vivants, suivie par les stocks du sol (15%), les stocks de bois mort (6%) et une fraction mineure des stocks de litière (1%). L'empreinte de l'intensité de l'exploitation forestière était encore détectable 16 ans après l'exploitation et a été le principal facteur expliquant la réduction des AGC>20, BGC>20, du bois mort et des stocks de C et une augmentation du bois mort. L'intensité de l'exploitation expliquait à elle seule 61%, 63%, 38% et 48% des variations des AGC>20, BGC>20, du bois mort et des stocks de C totaux, respectivement. L'intensité de l'abattage a également réduit considérablement les stocks de SOC dans la couche supérieure de 30 cm. Pour l'ensemble des stocks de SOC (0-100 cm), l'influence de l'intensité de l'exploitation était encore perceptible, en conjonction avec d'autres variables.Nos résultats quantifient l'effet à long terme de l'exploitation forestière sur les stocks de C forestier, en particulier sur les AGC et les bois morts. L'intensité élevée de l'exploitation forestière (réduction de 50% de la biomasse initiale) a réduit les stocks totaux de C de 27%. La récupération de l'AGC était plus faible dans les parcelles d'intensité d'exploitation forestière élevée, ce qui suggère une résilience plus faible de la forêt à l'exploitation forestière. Par conséquent, une intensité d'exploitation forestière inférieure à 20%, devrait être envisagé afin de limiter l'effet à long terme sur les AGC et le bois mort. / Tropical forests are a major reservoir of biodiversity and carbon (C), playing a pivotal role in global ecosystem function and climate regulation. However, most of the tropical forests, especially Bornean forests in Southeast Asia, are under intense pressure and threatened by anthropogenic activities such as logging, mining industry, agriculture and conversion to industrial plantation. In 2010, the area of production forests in Borneo was 26.8 million ha (approx. 36% of the total land area of Borneo) including 18 million ha (approx. 24%) of logged forests. Production forests are thus emerging as a dominant land-use, playing a crucial role in trading-off provision of goods and maintenance of ecosystem services, such as C and biodiversity retention.Selective logging is known to reduce both above- and below-ground biomass through the removal of a few large trees, while increasing deadwood stocks through collateral damages. By creating large gaps in the canopy, microclimates in the understory and on the forest floor change locally speeding up the decomposition of litter and organic matter. The extent of incidental damages, canopy openness, as well as the speed of C recovery, was shown to be primarily related to logging intensity. However, empirical evaluations of the long-term effect of logging intensity on C balance in production forests remain rare.The present thesis aims to assess the long-term effect of logging intensity on C sequestration in a north Bornean Dipterocarp forests (Malinau District, North Kalimantan) logged in 1999/2000. Five main C pools, namely above-ground (AGC) and below-ground (BGC) carbon in living trees, deadwood, litter, and soil organic carbon (SOC) were estimated along a logging intensity gradient (ranging from 0 to 57% of initial biomass removed).Our result showed that total C stocks 16 years after logging, ranged from 218-554 Mg C ha-1 with an average of 314 Mg C ha-1. A difference of 95 Mg C ha-1 was found between low logging intensity (<2.1% of initial biomass lost) and high logging intensity (>19%). Most C (approx. 77%) was found in living trees, followed by soil (15%), deadwood (6%), and a minor fraction in litter (1%). The imprint of logging intensity was still detectable 16 years after logging, and logging intensity thus was the main driver explaining the reduction of AGC>20, BGC>20, deadwood, and total C stocks and an increase in deadwood. Solely, logging intensity explained 61%, 63%, 38%, and 48% of variations of AGC>20, BGC>20, deadwood, and total C stocks, respectively. Logging intensity also significantly reduced SOC stocks in the upper 30 cm layer. For total SOC stocks (0-100 cm), the negative influence of logging intensity was still perceptible, being significant in conjunction with other variables.Our results quantify the long-term effect of logging on forest C stocks, especially on AGC and deadwood. High logging intensity (50% reduction of initial biomass) reduced total C stocks by 27%. AGC recovery was lower in high logging intensity plots, suggesting lowered forest resilience to logging. Our study showed that maintaining logging intensity, below 20% of the initial biomass, limit the long-term effect of logging on AGC and deadwood stocks.
|
Page generated in 0.0489 seconds