• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of High-Performance, Dual-Motor Liquid-Cooled, Linear Series Elastic Actuators for a Self-Balancing Exoskeleton

Kendrick, John Thomas 16 May 2018 (has links)
As a valuable asset in human augmentation and medical rehabilitation, exoskeletons have become a major area for research and development. They have shown themselves to be effective tools for training and rehabilitation of individuals suffering from limited mobility. However, most exoskeletons are not capable of balancing without the assistance of crutches from the user. Leveraging technology and techniques developed for force controlled humanoid robots, a project was undertaken to develop a fully self-balancing, compliant lower-body robotic exoskeleton. Due to their many beneficial features, series elastic actuators were utilized to power the joints on the exoskeleton. This thesis details the development of four linear series elastic actuators (LSEA) as part of this project. All 12-degrees of freedom will be powered by one of these four LSEA's. Actuator requirements were developed by examining human gait data and three robot-walking simulations. These four walking scenarios were synthesized into one set of power requirements for actuator development. Using these requirements, analytical models were developed to perform component trade studies and predict the performance of the actuator. These actuators utilize high-efficacy components, parallel electric motors, and liquid cooling to attain high power-to-weight ratios, while maintaining a small lightweight design. These analyses and trade studies have resulted in the design of a dual-motor liquid-cooled actuator capable of producing a peak force 8500N with a maximum travel speed of 0.267m/s, and three different single-motor actuators capable of producing forces up to 2450N continuously, with a maximum travel speeds up to 0.767m/s. / Master of Science

Page generated in 0.0577 seconds