• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Smart materials for structural health monitoring.

Verijenko, Belinda-Lee. January 2003 (has links)
A new philosophy in structural health monitoring was explored, with the view to the creation of a smart mining bolt: one which would bear the normal load of any bolt used in South African gold mining tunnels, but at the same time be capable of monitoring its own level of damage. To this end, a survey of various smart materials currently used in structural health monitoring applications, was conducted, and a group known as strain memory alloys isolated as holding the most promise in this regard. Strain memory alloys give an indication of peak strain based on an irreversible transformation from paramagnetic austenite to ferromagnetic martensite, which occurs in direct proportion to the amount of strain experienced by the material. A measurement of magnetic permeability can therefore be correlated to peak strain. An extensive study of the alloying chemistry, material processing and transformation characteristics was therefore carried out, including an analytical model for the quantification of the energy associated with martensitic nucleation, at a dislocation-disclination level. The conditions within typical South African gold mining tunnels were evaluated, and a smart mining bolt design produced, based on the loading and environmental conditions present. Several material formulations were then proposed, melted, tested and evaluated against the relevant strength, corrosion and transformation criteria. A suitable material was selected and further tested. A working prototype bolt has been produced, and in situ tests of complete bolts, are scheduled to take place shortly. / Thesis (Ph.D.)-University of Natal, Durban, 2003.
2

Development of the smart aircraft bolt.

Msibi, L. L. January 2002 (has links)
The work contained herein is in pursuance of the Development of the SMART aircraft bolt. Failure of the bolt in the aircraft wing is taken for granted in the project, and the consequent repairs are presently very costly. The SMART material investigated in this work is the TRIP steel, and any reference to SMART material, in this work, shall at all time mean TRIP steel. Investigation of the stresses pertaining to bolts in general is carried out, based on the bolt theories and using the finite element analysis. An optimal bolt based on impact resistance only has also been suggested. Metallurgical behaviour of materials similar to TRIP materials is also investigated, including a section dedicated only to TRIP steels. Therefore, the work contained herein acts as a good base for further research. / Thesis (M.Sc.Eng.)-University of Natal, Durban, 2002.

Page generated in 0.0754 seconds