• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reinforcement and Bonded Block Modelling

Skarvelas, Georgios Aristeidis January 2021 (has links)
The objective of this master’s thesis is to evaluate the use of Bonded Block Modelling (BBM) in 3DEC software combined with hybrid rock bolts, for three different cases. These cases included the laboratory rock bolt case, the shearing case and the blocky rock mass case. 3DEC is a Distinct Element Method (DEM) numerical software which can be used to simulate both continuum and discontinuum media in 3D. The Bonded Block Model in 3DEC can be used to simulate a rock mass as bonded polyhedral elements. The BBM is a relatively new numerical modelling technique. Earlier studies have focused mainly on laboratory test cases and less on field scale studies. The laboratory rock bolt test was introduced by Hoek and the main idea was to describe the way that rock bolts work. Four different rock bolt spacing designs were simulated and one unsupported model, in order to validate Hoek’s results. The diameter of the blocks was 15 cm while the zones were modelled with length of 5 cm. The tunnel on the shearing case was excavated at the depth of 1500 m. For the stress field, the in-situ stresses of Kiirunavaara mine were considered. The tunnel on the blocky case was excavated at the depth of 30 m and a gravitational stress field was assumed. The shearing model as well as the blocky model, were simulated on a quasi-3D model. The zone length for both cases was 0.1 m. In both cases, a discontinuum non-BBM was modelled first and then, a discontinuum BBM with different rock UCS values was simulated. The discontinuum BBM on the shearing case was simulated for rock UCS of 200, 100, and 50 MPa, while on the blocky case, it was simulated for rock UCS of 50 MPa. The Mohr – Coulomb constitutive model was selected for all three modelling cases. The conclusions of this work were the following: –       The laboratory rock bolt model validated the results of Hoek. Hoek suggested that rock bolt spacing less than three times the average rock piece diameter would be sufficient to produce positive results. The stabilization of the rock pieces as well as the forming of the compression zone were achieved when this equation was satisfied. The geometry of the stabilized material as well as the compression zone, were also correct. –       The discontinuum BBM on the shearing case with intact rock UCS of 200 MPa, produced similar results as the discontinuum non-BBM. This indicates that BBM can be applied for these cases and produce reliable results. The displacement of the fault was expected to be higher than the resulting values. The discontinuum BBM with reduced rock strength (100 MPa and 50 MPa) resulted in rock mass fragmentation. However, the fragmented rock pieces did not detach from the rock mass as the displacement values were not high enough.   –       The discontinuum BBM on the blocky case with intact rock UCS of 50 MPa, produced similar results as the discontinuum non-BBM. There were two discontinuities that affected the smooth transition of the displacement/stress results on the different blocks. The fragmentation of the rock mass due to the existence of the discontinuities did not produce any further rock mass movements.   –       The interaction between rock mass and rock bolts was evident in any modelling case. For the laboratory rock bolt model, the hybrid bolts design was vital for producing correct results. For the shearing model, the hybrid bolts were subjected to shearing movements due to fault movements. In the blocky model, the bolts in the roof of the tunnel were subjected to axial displacements, due to the existence of blocks. The recommendations for further work were the following: –       The hybrid bolts in the laboratory rock bolt test were pretensioned only in the beginning of the computation phase. In reality, the tensioned bolts act at every moment and not only in the beginning. However, it would be interesting to see if the results are similar with continuously tensioned hybrid bolts. It is anticipated that the constantly tensioned hybrid bolts should be able to keep the compressive zones with high values throughout the whole cycling process. Thus, it is suggested for future modellers that this case could be modelled with continuously tensioned hybrid bolts. –       The installation of rock bolts in the shear case as well as in the blocky case, was at the exact same time as the tunnel was excavated.  This is not realistic fact because it is impossible to install the rock bolts exactly the same time as the tunnel excavated. Thus, it is suggested that those two cases could be modelled in the future with more focus on the stress relaxation factor.

Page generated in 0.0892 seconds